All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.cassandra.utils.streamhist.StreamingTombstoneHistogramBuilder Maven / Gradle / Ivy

Go to download

The Apache Cassandra Project develops a highly scalable second-generation distributed database, bringing together Dynamo's fully distributed design and Bigtable's ColumnFamily-based data model.

There is a newer version: 5.0.2
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.cassandra.utils.streamhist;

import java.math.RoundingMode;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

import com.google.common.annotations.VisibleForTesting;
import com.google.common.math.IntMath;

import org.apache.commons.lang3.StringUtils;

import org.apache.cassandra.db.rows.Cell;

/**
 * Histogram that can be constructed from streaming of data.
 *
 * Histogram used to retrieve the number of droppable tombstones for example via
 * {@link org.apache.cassandra.io.sstable.format.SSTableReader#getDroppableTombstonesBefore(long)}.
 * 

* When an sstable is written (or streamed), this histogram-builder receives the "local deletion timestamp" * as an {@code long} via {@link #update(long)}. Negative values are not supported. *

* Algorithm: Histogram is represented as collection of {point, weight} pairs. When new point p with weight m is added: *

    *
  1. If point p is already exists in collection, add m to recorded value of point p
  2. *
  3. If there is no point p in the collection, add point p with weight m
  4. *
  5. If point was added and collection size became larger than maxBinSize:
  6. *
* *
    *
  1. Find nearest points p1 and p2 in the collection
  2. *
  3. Replace these two points with one weighted point p3 = (p1*m1+p2*m2)/(p1+p2)
  4. *
* *

* There are some optimization to make histogram builder faster: *

    *
  1. Spool: big map that saves from excessively merging of small bin. This map can contains up to maxSpoolSize points and accumulate weight from same points. * For example, if spoolSize=100, binSize=10 and there are only 50 different points. it will be only 40 merges regardless how many points will be added.
  2. *
  3. Spool is organized as open-addressing primitive hash map where odd elements are points and event elements are values. * Spool can not resize => when number of collisions became bigger than threshold or size became large that array_size/2 Spool is drained to bin
  4. *
  5. Bin is organized as sorted arrays. It reduces garbage collection pressure and allows to find elements in log(binSize) time via binary search
  6. *
  7. To use existing Arrays.binarySearch {point, values} in bin pairs is packed in one long
  8. *
*

* The original algorithm is taken from following paper: * Yael Ben-Haim and Elad Tom-Tov, "A Streaming Parallel Decision Tree Algorithm" (2010) * http://jmlr.csail.mit.edu/papers/volume11/ben-haim10a/ben-haim10a.pdf */ public class StreamingTombstoneHistogramBuilder { // Buffer with point-value pair private final DataHolder bin; // Keep a second, larger buffer to spool data in, before finalizing it into `bin` private Spool spool; // voluntarily give up resolution for speed private final int roundSeconds; public StreamingTombstoneHistogramBuilder(int maxBinSize, int maxSpoolSize, int roundSeconds) { assert maxBinSize > 0 && maxSpoolSize >= 0 && roundSeconds > 0: "Invalid arguments: maxBinSize:" + maxBinSize + " maxSpoolSize:" + maxSpoolSize + " delta:" + roundSeconds; this.roundSeconds = roundSeconds; this.bin = new DataHolder(maxBinSize + 1, roundSeconds); this.spool = new Spool(maxSpoolSize); } /** * Adds new point to this histogram with a default value of 1. * * @param point the point to be added */ public void update(long point) { update(point, 1); } /** * Adds new point {@param point} with value {@param value} to this histogram. */ public void update(long point, int value) { assert spool != null: "update is being called after releaseBuffers. This could be functionally okay, but this assertion is a canary to alert about unintended use before it is necessary."; point = ceilKey(point, roundSeconds); if (spool.capacity > 0) { if (!spool.tryAddOrAccumulate(point, value)) { flushHistogram(); final boolean success = spool.tryAddOrAccumulate(point, value); assert success : "Can not add value to spool"; // after spool flushing we should always be able to insert new value } } else { flushValue(point, value); } } /** * Drain the temporary spool into the final bins */ public void flushHistogram() { Spool spool = this.spool; if (spool != null) { spool.forEach(this::flushValue); spool.clear(); } } /** * Release inner spool buffers. Histogram remains readable and writable, but with lesser performance. * Not intended for use before finalization. */ public void releaseBuffers() { flushHistogram(); spool = null; } private void flushValue(long key, int spoolValue) { bin.addValue(key, spoolValue); if (bin.isFull()) { bin.mergeNearestPoints(); } } /** * Creates a 'finished' snapshot of the current state of the histogram, but leaves this builder instance * open for subsequent additions to the histograms. Basically, this allows us to have some degree of sanity * wrt sstable early open. */ public TombstoneHistogram build() { flushHistogram(); return new TombstoneHistogram(bin); } /** * An ordered collection of histogram buckets, each entry in the collection represents a pair (bucket, count). * Once the collection is full it merges the closest buckets using a weighted approach see {@link #mergeNearestPoints()}. */ static class DataHolder { private static final long EMPTY = Long.MAX_VALUE; private final long[] points; private final int[] values; private final int roundSeconds; DataHolder(int maxCapacity, int roundSeconds) { points = new long[maxCapacity]; values = new int[maxCapacity]; Arrays.fill(points, EMPTY); Arrays.fill(values, 0); this.roundSeconds = roundSeconds; } DataHolder(DataHolder holder) { points = Arrays.copyOf(holder.points, holder.points.length); values = Arrays.copyOf(holder.values, holder.values.length); roundSeconds = holder.roundSeconds; } @VisibleForTesting int getValue(long point) { int index = Arrays.binarySearch(points, point); if (index < 0) index = -index - 1; if (index >= points.length) return -1; // not-found sentinel if (points[index] != point) return -2; // not-found sentinel return values[index]; } /** * Adds value {@code delta} to the point {@code point}. * * @return {@code true} if inserted, {@code false} if accumulated */ boolean addValue(long point, int delta) { int index = Arrays.binarySearch(points, point); if (index < 0) { index = -index - 1; assert (index < points.length) : "No more space in array"; if (points[index] != point) //ok, someone else at this point, let's shift array and insert { assert (points[points.length - 1] == EMPTY) : "No more space in array"; System.arraycopy(points, index, points, index + 1, points.length - index - 1); System.arraycopy(values, index, values, index + 1, values.length - index - 1); points[index] = point; values[index] = saturatingCastToInt(delta); return true; } else { values[index] = saturatingCastToInt((long)values[index] + (long)delta); } } else { values[index] = saturatingCastToInt((long)values[index] + (long)delta); } return false; } /** * Finds nearest points p1 and p2 in the collection * Replaces these two points with one weighted point p3 = (p1*m1+p2*m2)/(p1+p2) */ @VisibleForTesting void mergeNearestPoints() { assert isFull() : "DataHolder must be full in order to merge two points"; final long[] smallestDifference = findPointPairWithSmallestDistance(); final long point1 = smallestDifference[0]; final long point2 = smallestDifference[1]; int index = Arrays.binarySearch(points, point1); if (index < 0) { index = -index - 1; assert (index < points.length) : "Not found in array"; assert (points[index] == point1) : "Not found in array"; } long value1 = values[index]; long value2 = values[index + 1]; assert (points[index + 1] == point2) : "point2 should follow point1"; long a = saturatingCastToLong(point1 * value1); long b = saturatingCastToLong(point2 * value2); long sum = saturatingCastToLong(value1 + value2); long newPoint = saturatingCastToMaxDeletionTime(saturatingCastToLong(a + b) / sum); newPoint = newPoint <= point1 ? saturatingCastToMaxDeletionTime(point1 + 1) : newPoint; newPoint = Math.min(newPoint, point2); newPoint = ceilKey(newPoint, roundSeconds); points[index] = newPoint; values[index] = saturatingCastToInt(sum); System.arraycopy(points, index + 2, points, index + 1, points.length - index - 2); System.arraycopy(values, index + 2, values, index + 1, values.length - index - 2); points[points.length - 1] = EMPTY; values[values.length - 1] = 0; } private long[] findPointPairWithSmallestDistance() { assert isFull(): "The DataHolder must be full in order to find the closest pair of points"; long point1 = 0; long point2 = Long.MAX_VALUE; for (int i = 0; i < points.length - 1; i++) { long pointA = points[i]; long pointB = points[i + 1]; assert pointB > pointA : "DataHolder not sorted, p2(" + pointB +") < p1(" + pointA + ") for " + this; if (point2 - point1 > pointB - pointA) { point1 = pointA; point2 = pointB; } } return new long[]{point1, point2}; } public String toString() { List entries = new ArrayList<>(); for (int i = 0; i < points.length; i++) { if (points[i] == EMPTY) break; entries.add("[" + points[i] + "], [" + values[i] + "]"); } return StringUtils.join(entries, ","); } public boolean isFull() { return points[points.length - 1] != EMPTY; } public void forEach(HistogramDataConsumer histogramDataConsumer) throws E { for (int i = 0; i < points.length; i++) { if (points[i] == EMPTY) break; histogramDataConsumer.consume(points[i], values[i]); } } public int size() { int[] accumulator = new int[1]; forEach((point, value) -> accumulator[0]++); return accumulator[0]; } public double sum(int b) { double sum = 0; for (int i = 0; i < points.length; i++) { final long point = points[i]; if (point == EMPTY) break; final int value = values[i]; if (point > b) { if (i == 0) { // no prev point return 0; } else { final long prevPoint = points[i - 1]; final int prevValue = values[i - 1]; // calculate estimated count mb for point b double weight = (b - prevPoint) / (double) (point - prevPoint); double mb = prevValue + (value - prevValue) * weight; sum -= prevValue; sum += (prevValue + mb) * weight / 2; sum += prevValue / 2.0; return sum; } } else { sum += value; } } return sum; } @Override public int hashCode() { return Arrays.hashCode(points); } @Override public boolean equals(Object o) { if (!(o instanceof DataHolder)) return false; final DataHolder other = ((DataHolder) o); if (this.size()!=other.size()) return false; for (int i=0; i capacity) { return false; } final int cell = (capacity - 1) & hash(point); // We use linear scanning. I think cluster of 100 elements is large enough to give up. for (int attempt = 0; attempt < 100; attempt++) { if (tryCell(cell + attempt, point, delta)) return true; } return false; } private int hash(long i) { long largePrime = 948701839L; return (int) (i * largePrime); } void forEach(HistogramDataConsumer consumer) throws E { for (int i = 0; i < points.length; i++) { if (points[i] != -1) { consumer.consume(points[i], values[i]); } } } private boolean tryCell(int cell, long point, int delta) { assert cell >= 0 && point >= 0 && delta >= 0 : "Invalid arguments: cell:" + cell + " point:" + point + " delta:" + delta; cell = cell % points.length; if (points[cell] == -1) { points[cell] = point; values[cell] = delta; size++; return true; } if (points[cell] == point) { values[cell] = (int) saturatingCastToInt((long) values[cell] + (long) delta); return true; } return false; } public String toString() { StringBuilder sb = new StringBuilder(); sb.append('['); for (int i = 0; i < points.length; i++) { if (points[i] == -1) continue; if (sb.length() > 1) sb.append(", "); sb.append('[').append(points[i]).append(',').append(values[i]).append(']'); } sb.append(']'); return sb.toString(); } } private static long ceilKey(long point, int bucketSize) { long delta = point % bucketSize; if (delta == 0) return point; return saturatingCastToMaxDeletionTime((long) point + (long) bucketSize - (long) delta); } public static int saturatingCastToInt(long value) { return (int) (value > Integer.MAX_VALUE ? Integer.MAX_VALUE : value); } public static long saturatingCastToLong(long value) { return value < 0L ? Long.MAX_VALUE : value; } /** * Cast to an long with maximum value of {@code Cell.MAX_DELETION_TIME} to avoid representing values that * aren't a tombstone */ public static long saturatingCastToMaxDeletionTime(long value) { return (value < 0L || value > Cell.MAX_DELETION_TIME) ? Cell.MAX_DELETION_TIME : value; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy