All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.collections4.trie.AbstractPatriciaTrie Maven / Gradle / Ivy

Go to download

The Apache Commons Collections package contains types that extend and augment the Java Collections Framework.

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.collections4.trie;

import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.util.AbstractCollection;
import java.util.AbstractMap;
import java.util.AbstractSet;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.ConcurrentModificationException;
import java.util.Iterator;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Objects;
import java.util.Set;
import java.util.SortedMap;

import org.apache.commons.collections4.OrderedMapIterator;
import org.apache.commons.collections4.Trie;

/**
 * This class implements the base PATRICIA algorithm and everything that
 * is related to the {@link Map} interface.
 *
 * @param  the type of the keys in this map
 * @param  the type of the values in this map
 * @since 4.0
 */
public abstract class AbstractPatriciaTrie extends AbstractBitwiseTrie {

    /**
     * A range view of the {@link org.apache.commons.collections4.Trie}.
     */
    private abstract class AbstractRangeMap extends AbstractMap
            implements SortedMap {

        /** The {@link #entrySet()} view. */
        private transient volatile Set> entrySet;

        @Override
        public Comparator comparator() {
            return AbstractPatriciaTrie.this.comparator();
        }

        @Override
        public boolean containsKey(final Object key) {
            if (!inRange(castKey(key))) {
                return false;
            }

            return AbstractPatriciaTrie.this.containsKey(key);
        }

        /**
         * Creates and returns an {@link #entrySet()} view of the {@link AbstractRangeMap}.
         */
        protected abstract Set> createEntrySet();

        /**
         * Creates and returns a sub-range view of the current {@link AbstractRangeMap}.
         */
        protected abstract SortedMap createRangeMap(K fromKey, boolean fromInclusive,
                                                          K toKey, boolean toInclusive);

        @Override
        public Set> entrySet() {
            if (entrySet == null) {
                entrySet = createEntrySet();
            }
            return entrySet;
        }

        @Override
        public V get(final Object key) {
            if (!inRange(castKey(key))) {
                return null;
            }

            return AbstractPatriciaTrie.this.get(key);
        }

        /**
         * Returns the FROM Key.
         */
        protected abstract K getFromKey();

        /**
         * Returns the TO Key.
         */
        protected abstract K getToKey();

        @Override
        public SortedMap headMap(final K toKey) {
            if (!inRange2(toKey)) {
                throw new IllegalArgumentException("ToKey is out of range: " + toKey);
            }
            return createRangeMap(getFromKey(), isFromInclusive(), toKey, isToInclusive());
        }

        /**
         * Returns true if the provided key is in the FROM range of the {@link AbstractRangeMap}.
         */
        protected boolean inFromRange(final K key, final boolean forceInclusive) {
            final K fromKey = getFromKey();
            final boolean fromInclusive = isFromInclusive();

            final int ret = getKeyAnalyzer().compare(key, fromKey);
            if (fromInclusive || forceInclusive) {
                return ret >= 0;
            }
            return ret > 0;
        }

        /**
         * Returns true if the provided key is greater than TO and less than FROM.
         */
        protected boolean inRange(final K key) {
            final K fromKey = getFromKey();
            final K toKey = getToKey();

            return (fromKey == null || inFromRange(key, false)) && (toKey == null || inToRange(key, false));
        }

        /**
         * This form allows the high endpoint (as well as all legit keys).
         */
        protected boolean inRange2(final K key) {
            final K fromKey = getFromKey();
            final K toKey = getToKey();

            return (fromKey == null || inFromRange(key, false)) && (toKey == null || inToRange(key, true));
        }

        /**
         * Returns true if the provided key is in the TO range of the {@link AbstractRangeMap}.
         */
        protected boolean inToRange(final K key, final boolean forceInclusive) {
            final K toKey = getToKey();
            final boolean toInclusive = isToInclusive();

            final int ret = getKeyAnalyzer().compare(key, toKey);
            if (toInclusive || forceInclusive) {
                return ret <= 0;
            }
            return ret < 0;
        }

        /**
         * Whether or not the {@link #getFromKey()} is in the range.
         */
        protected abstract boolean isFromInclusive();

        /**
         * Whether or not the {@link #getToKey()} is in the range.
         */
        protected abstract boolean isToInclusive();

        @Override
        public V put(final K key, final V value) {
            if (!inRange(key)) {
                throw new IllegalArgumentException("Key is out of range: " + key);
            }
            return AbstractPatriciaTrie.this.put(key, value);
        }

        @Override
        public V remove(final Object key) {
            if (!inRange(castKey(key))) {
                return null;
            }

            return AbstractPatriciaTrie.this.remove(key);
        }

        @Override
        public SortedMap subMap(final K fromKey, final K toKey) {
            if (!inRange2(fromKey)) {
                throw new IllegalArgumentException("FromKey is out of range: " + fromKey);
            }

            if (!inRange2(toKey)) {
                throw new IllegalArgumentException("ToKey is out of range: " + toKey);
            }

            return createRangeMap(fromKey, isFromInclusive(), toKey, isToInclusive());
        }

        @Override
        public SortedMap tailMap(final K fromKey) {
            if (!inRange2(fromKey)) {
                throw new IllegalArgumentException("FromKey is out of range: " + fromKey);
            }
            return createRangeMap(fromKey, isFromInclusive(), getToKey(), isToInclusive());
        }
    }

    /**
     * An iterator for the entries.
     */
    abstract class AbstractTrieIterator implements Iterator {

        /** For fast-fail. */
        protected int expectedModCount = AbstractPatriciaTrie.this.modCount;

        protected TrieEntry next; // the next node to return
        protected TrieEntry current; // the current entry we're on

        /**
         * Starts iteration from the root.
         */
        protected AbstractTrieIterator() {
            next = AbstractPatriciaTrie.this.nextEntry(null);
        }

        /**
         * Starts iteration at the given entry.
         */
        protected AbstractTrieIterator(final TrieEntry firstEntry) {
            next = firstEntry;
        }

        /**
         * @see PatriciaTrie#nextEntry(TrieEntry)
         */
        protected TrieEntry findNext(final TrieEntry prior) {
            return AbstractPatriciaTrie.this.nextEntry(prior);
        }

        @Override
        public boolean hasNext() {
            return next != null;
        }

        /**
         * Returns the next {@link TrieEntry}.
         */
        protected TrieEntry nextEntry() {
            if (expectedModCount != AbstractPatriciaTrie.this.modCount) {
                throw new ConcurrentModificationException();
            }

            final TrieEntry e = next;
            if (e == null) {
                throw new NoSuchElementException();
            }

            next = findNext(e);
            current = e;
            return e;
        }

        @Override
        public void remove() {
            if (current == null) {
                throw new IllegalStateException();
            }

            if (expectedModCount != AbstractPatriciaTrie.this.modCount) {
                throw new ConcurrentModificationException();
            }

            final TrieEntry node = current;
            current = null;
            AbstractPatriciaTrie.this.removeEntry(node);

            expectedModCount = AbstractPatriciaTrie.this.modCount;
        }
    }

    /**
     * This is an entry set view of the {@link org.apache.commons.collections4.Trie} as returned by {@link Map#entrySet()}.
     */
    private final class EntrySet extends AbstractSet> {

        /**
         * An {@link Iterator} that returns {@link Entry} Objects.
         */
        private final class EntryIterator extends AbstractTrieIterator> {
            @Override
            public Map.Entry next() {
                return nextEntry();
            }
        }

        @Override
        public void clear() {
            AbstractPatriciaTrie.this.clear();
        }

        @Override
        public boolean contains(final Object o) {
            if (!(o instanceof Map.Entry)) {
                return false;
            }

            final TrieEntry candidate = getEntry(((Map.Entry) o).getKey());
            return candidate != null && candidate.equals(o);
        }

        @Override
        public Iterator> iterator() {
            return new EntryIterator();
        }

        @Override
        public boolean remove(final Object obj) {
            if (!(obj instanceof Map.Entry)) {
                return false;
            }
            if (!contains(obj)) {
                return false;
            }
            final Map.Entry entry = (Map.Entry) obj;
            AbstractPatriciaTrie.this.remove(entry.getKey());
            return true;
        }

        @Override
        public int size() {
            return AbstractPatriciaTrie.this.size();
        }
    }
    /**
     * This is a key set view of the {@link org.apache.commons.collections4.Trie} as returned by {@link Map#keySet()}.
     */
    private final class KeySet extends AbstractSet {

        /**
         * An {@link Iterator} that returns Key Objects.
         */
        private final class KeyIterator extends AbstractTrieIterator {
            @Override
            public K next() {
                return nextEntry().getKey();
            }
        }

        @Override
        public void clear() {
            AbstractPatriciaTrie.this.clear();
        }

        @Override
        public boolean contains(final Object o) {
            return containsKey(o);
        }

        @Override
        public Iterator iterator() {
            return new KeyIterator();
        }

        @Override
        public boolean remove(final Object o) {
            final int size = size();
            AbstractPatriciaTrie.this.remove(o);
            return size != size();
        }

        @Override
        public int size() {
            return AbstractPatriciaTrie.this.size();
        }
    }
    /**
     * A prefix {@link RangeEntrySet} view of the {@link org.apache.commons.collections4.Trie}.
     */
    private final class PrefixRangeEntrySet extends RangeEntrySet {

        /**
         * An {@link Iterator} for iterating over a prefix search.
         */
        private final class EntryIterator extends AbstractTrieIterator> {

            // values to reset the subtree if we remove it.
            private final K prefix;
            private final int offset;
            private final int lengthInBits;
            private boolean lastOne;

            private TrieEntry subtree; // the subtree to search within

            /**
             * Starts iteration at the given entry & search only
             * within the given subtree.
             */
            EntryIterator(final TrieEntry startScan, final K prefix,
                    final int offset, final int lengthInBits) {
                subtree = startScan;
                next = AbstractPatriciaTrie.this.followLeft(startScan);
                this.prefix = prefix;
                this.offset = offset;
                this.lengthInBits = lengthInBits;
            }

            @Override
            protected TrieEntry findNext(final TrieEntry prior) {
                return AbstractPatriciaTrie.this.nextEntryInSubtree(prior, subtree);
            }

            @Override
            public Map.Entry next() {
                final Map.Entry entry = nextEntry();
                if (lastOne) {
                    next = null;
                }
                return entry;
            }

            @Override
            public void remove() {
                // If the current entry we're removing is the subtree
                // then we need to find a new subtree parent.
                boolean needsFixing = false;
                final int bitIdx = subtree.bitIndex;
                if (current == subtree) {
                    needsFixing = true;
                }

                super.remove();

                // If the subtree changed its bitIndex or we
                // removed the old subtree, get a new one.
                if (bitIdx != subtree.bitIndex || needsFixing) {
                    subtree = subtree(prefix, offset, lengthInBits);
                }

                // If the subtree's bitIndex is less than the
                // length of our prefix, it's the last item
                // in the prefix tree.
                if (lengthInBits >= subtree.bitIndex) {
                    lastOne = true;
                }
            }
        }

        /**
         * An {@link Iterator} that holds a single {@link TrieEntry}.
         */
        private final class SingletonIterator implements Iterator> {

            private final TrieEntry entry;

            private int hit;

            SingletonIterator(final TrieEntry entry) {
                this.entry = entry;
            }

            @Override
            public boolean hasNext() {
                return hit == 0;
            }

            @Override
            public Map.Entry next() {
                if (hit != 0) {
                    throw new NoSuchElementException();
                }

                ++hit;
                return entry;
            }

            @Override
            public void remove() {
                if (hit != 1) {
                    throw new IllegalStateException();
                }

                ++hit;
                AbstractPatriciaTrie.this.removeEntry(entry);
            }
        }

        private final PrefixRangeMap delegate;

        private TrieEntry prefixStart;

        private int expectedModCount;

        /**
         * Creates a {@link PrefixRangeEntrySet}.
         */
        PrefixRangeEntrySet(final PrefixRangeMap delegate) {
            super(delegate);
            this.delegate = delegate;
        }

        @Override
        public Iterator> iterator() {
            if (AbstractPatriciaTrie.this.modCount != expectedModCount) {
                prefixStart = subtree(delegate.prefix, delegate.offsetInBits, delegate.lengthInBits);
                expectedModCount = AbstractPatriciaTrie.this.modCount;
            }

            if (prefixStart == null) {
                final Set> empty = Collections.emptySet();
                return empty.iterator();
            }
            if (delegate.lengthInBits > prefixStart.bitIndex) {
                return new SingletonIterator(prefixStart);
            }
            return new EntryIterator(prefixStart, delegate.prefix, delegate.offsetInBits, delegate.lengthInBits);
        }

        @Override
        public int size() {
            return delegate.fixup();
        }
    }

    /**
     * A submap used for prefix views over the {@link org.apache.commons.collections4.Trie}.
     */
    private final class PrefixRangeMap extends AbstractRangeMap {

        private final K prefix;

        private final int offsetInBits;

        private final int lengthInBits;

        private K fromKey;

        private K toKey;

        private transient int expectedModCount;

        private int size = -1;

        /**
         * Creates a {@link PrefixRangeMap}.
         */
        private PrefixRangeMap(final K prefix, final int offsetInBits, final int lengthInBits) {
            this.prefix = prefix;
            this.offsetInBits = offsetInBits;
            this.lengthInBits = lengthInBits;
        }

        @Override
        public void clear() {
            final Iterator> it = AbstractPatriciaTrie.this.entrySet().iterator();
            final Set currentKeys = keySet();
            while (it.hasNext()) {
                if (currentKeys.contains(it.next().getKey())) {
                    it.remove();
                }
            }
        }

        @Override
        protected Set> createEntrySet() {
            return new PrefixRangeEntrySet(this);
        }

        @Override
        protected SortedMap createRangeMap(final K fromKey, final boolean fromInclusive,
                                                 final K toKey, final boolean toInclusive) {
            return new RangeEntryMap(fromKey, fromInclusive, toKey, toInclusive);
        }

        @Override
        public K firstKey() {
            fixup();

            Map.Entry e = null;
            if (fromKey == null) {
                e = firstEntry();
            } else {
                e = higherEntry(fromKey);
            }

            final K first = e != null ? e.getKey() : null;
            if (e == null || !getKeyAnalyzer().isPrefix(prefix, offsetInBits, lengthInBits, first)) {
                throw new NoSuchElementException();
            }

            return first;
        }

        /**
         * This method does two things. It determines the FROM
         * and TO range of the {@link PrefixRangeMap} and the number
         * of elements in the range. This method must be called every
         * time the {@link org.apache.commons.collections4.Trie} has changed.
         */
        private int fixup() {
            // The trie has changed since we last found our toKey / fromKey
            if (size == - 1 || AbstractPatriciaTrie.this.modCount != expectedModCount) {
                final Iterator> it = super.entrySet().iterator();
                size = 0;

                Map.Entry entry = null;
                if (it.hasNext()) {
                    entry = it.next();
                    size = 1;
                }

                fromKey = entry == null ? null : entry.getKey();
                if (fromKey != null) {
                    final TrieEntry prior = previousEntry((TrieEntry) entry);
                    fromKey = prior == null ? null : prior.getKey();
                }

                toKey = fromKey;

                while (it.hasNext()) {
                    ++size;
                    entry = it.next();
                }

                toKey = entry == null ? null : entry.getKey();

                if (toKey != null) {
                    entry = nextEntry((TrieEntry) entry);
                    toKey = entry == null ? null : entry.getKey();
                }

                expectedModCount = AbstractPatriciaTrie.this.modCount;
            }

            return size;
        }

        @Override
        public K getFromKey() {
            return fromKey;
        }

        @Override
        public K getToKey() {
            return toKey;
        }

        /**
         * Returns true if the provided Key is in the FROM range of the {@link PrefixRangeMap}.
         */
        @Override
        protected boolean inFromRange(final K key, final boolean forceInclusive) {
            return getKeyAnalyzer().isPrefix(prefix, offsetInBits, lengthInBits, key);
        }

        /**
         * Returns true if this {@link PrefixRangeMap}'s key is a prefix of the provided key.
         */
        @Override
        protected boolean inRange(final K key) {
            return getKeyAnalyzer().isPrefix(prefix, offsetInBits, lengthInBits, key);
        }

        /**
         * Same as {@link #inRange(Object)}.
         */
        @Override
        protected boolean inRange2(final K key) {
            return inRange(key);
        }

        /**
         * Returns true if the provided Key is in the TO range of the {@link PrefixRangeMap}.
         */
        @Override
        protected boolean inToRange(final K key, final boolean forceInclusive) {
            return getKeyAnalyzer().isPrefix(prefix, offsetInBits, lengthInBits, key);
        }

        @Override
        public boolean isFromInclusive() {
            return false;
        }

        @Override
        public boolean isToInclusive() {
            return false;
        }

        @Override
        public K lastKey() {
            fixup();

            Map.Entry e = null;
            if (toKey == null) {
                e = lastEntry();
            } else {
                e = lowerEntry(toKey);
            }

            final K last = e != null ? e.getKey() : null;
            if (e == null || !getKeyAnalyzer().isPrefix(prefix, offsetInBits, lengthInBits, last)) {
                throw new NoSuchElementException();
            }

            return last;
        }
    }

    /**
     * A {@link AbstractRangeMap} that deals with {@link Entry}s.
     */
    private final class RangeEntryMap extends AbstractRangeMap {

        /** The key to start from, null if the beginning. */
        private final K fromKey;

        /** The key to end at, null if till the end. */
        private final K toKey;

        /** Whether or not the 'from' is inclusive. */
        private final boolean fromInclusive;

        /** Whether or not the 'to' is inclusive. */
        private final boolean toInclusive;

        /**
         * Creates a {@link RangeEntryMap}.
         */
        protected RangeEntryMap(final K fromKey, final boolean fromInclusive,
                                final K toKey, final boolean toInclusive) {

            if (fromKey == null && toKey == null) {
                throw new IllegalArgumentException("must have a from or to!");
            }

            if (fromKey != null && toKey != null && getKeyAnalyzer().compare(fromKey, toKey) > 0) {
                throw new IllegalArgumentException("fromKey > toKey");
            }

            this.fromKey = fromKey;
            this.fromInclusive = fromInclusive;
            this.toKey = toKey;
            this.toInclusive = toInclusive;
        }

        /**
         * Creates a {@link RangeEntryMap} with the fromKey included and
         * the toKey excluded from the range.
         */
        protected RangeEntryMap(final K fromKey, final K toKey) {
            this(fromKey, true, toKey, false);
        }

        @Override
        protected Set> createEntrySet() {
            return new RangeEntrySet(this);
        }

        @Override
        protected SortedMap createRangeMap(final K fromKey, final boolean fromInclusive,
                                                 final K toKey, final boolean toInclusive) {
            return new RangeEntryMap(fromKey, fromInclusive, toKey, toInclusive);
        }

        @Override
        public K firstKey() {
            Map.Entry e = null;
            if (fromKey == null) {
                e = firstEntry();
            } else if (fromInclusive) {
                e = ceilingEntry(fromKey);
            } else {
                e = higherEntry(fromKey);
            }

            final K first = e != null ? e.getKey() : null;
            if (e == null || toKey != null && !inToRange(first, false)) {
                throw new NoSuchElementException();
            }
            return first;
        }

        @Override
        public K getFromKey() {
            return fromKey;
        }

        @Override
        public K getToKey() {
            return toKey;
        }

        @Override
        public boolean isFromInclusive() {
            return fromInclusive;
        }

        @Override
        public boolean isToInclusive() {
            return toInclusive;
        }

        @Override
        public K lastKey() {
            final Map.Entry e;
            if (toKey == null) {
                e = lastEntry();
            } else if (toInclusive) {
                e = floorEntry(toKey);
            } else {
                e = lowerEntry(toKey);
            }

            final K last = e != null ? e.getKey() : null;
            if (e == null || fromKey != null && !inFromRange(last, false)) {
                throw new NoSuchElementException();
            }
            return last;
        }
    }

    /**
     * A {@link Set} view of a {@link AbstractRangeMap}.
     */
    private class RangeEntrySet extends AbstractSet> {

        /**
         * An {@link Iterator} for {@link RangeEntrySet}s.
         */
        private final class EntryIterator extends AbstractTrieIterator> {

            private final K excludedKey;

            /**
             * Creates a {@link EntryIterator}.
             */
            private EntryIterator(final TrieEntry first, final TrieEntry last) {
                super(first);
                this.excludedKey = last != null ? last.getKey() : null;
            }

            @Override
            public boolean hasNext() {
                return next != null && !compare(next.key, excludedKey);
            }

            @Override
            public Map.Entry next() {
                if (next == null || compare(next.key, excludedKey)) {
                    throw new NoSuchElementException();
                }
                return nextEntry();
            }
        }

        private final AbstractRangeMap delegate;

        private transient int size = -1;

        private transient int expectedModCount;

        /**
         * Creates a {@link RangeEntrySet}.
         */
        RangeEntrySet(final AbstractRangeMap delegate) {
            this.delegate = Objects.requireNonNull(delegate, "delegate");
        }

        @SuppressWarnings("unchecked")
        @Override
        public boolean contains(final Object o) {
            if (!(o instanceof Map.Entry)) {
                return false;
            }

            final Map.Entry entry = (Map.Entry) o;
            final K key = entry.getKey();
            if (!delegate.inRange(key)) {
                return false;
            }

            final TrieEntry node = getEntry(key);
            return node != null && compare(node.getValue(), entry.getValue());
        }

        @Override
        public boolean isEmpty() {
            return !iterator().hasNext();
        }

        @Override
        public Iterator> iterator() {
            final K fromKey = delegate.getFromKey();
            final K toKey = delegate.getToKey();

            TrieEntry first = null;
            if (fromKey == null) {
                first = firstEntry();
            } else {
                first = ceilingEntry(fromKey);
            }

            TrieEntry last = null;
            if (toKey != null) {
                last = ceilingEntry(toKey);
            }

            return new EntryIterator(first, last);
        }

        @SuppressWarnings("unchecked")
        @Override
        public boolean remove(final Object o) {
            if (!(o instanceof Map.Entry)) {
                return false;
            }

            final Map.Entry entry = (Map.Entry) o;
            final K key = entry.getKey();
            if (!delegate.inRange(key)) {
                return false;
            }

            final TrieEntry node = getEntry(key);
            if (node != null && compare(node.getValue(), entry.getValue())) {
                removeEntry(node);
                return true;
            }
            return false;
        }

        @Override
        public int size() {
            if (size == -1 || expectedModCount != AbstractPatriciaTrie.this.modCount) {
                size = 0;

                for (final Iterator it = iterator(); it.hasNext(); it.next()) {
                    ++size;
                }

                expectedModCount = AbstractPatriciaTrie.this.modCount;
            }
            return size;
        }
    }

    /**
     * A {@link Reference} allows us to return something through a Method's
     * argument list. An alternative would be to an Array with a length of
     * one (1) but that leads to compiler warnings. Computationally and memory
     * wise there's no difference (except for the need to load the
     * {@link Reference} Class but that happens only once).
     */
    private static final class Reference {

        private E item;

        public E get() {
            return item;
        }

        public void set(final E item) {
            this.item = item;
        }
    }

    /**
     * A {@link org.apache.commons.collections4.Trie} is a set of {@link TrieEntry} nodes.
     *
     * @param  the key type.
     * @param  the value type.
     */
    protected static class TrieEntry extends BasicEntry {

        private static final long serialVersionUID = 4596023148184140013L;

        /** The index this entry is comparing. */
        protected int bitIndex;

        /** The parent of this entry. */
        protected TrieEntry parent;

        /** The left child of this entry. */
        protected TrieEntry left;

        /** The right child of this entry. */
        protected TrieEntry right;

        /** The entry who uplinks to this entry. */
        protected TrieEntry predecessor;

        /**
         * Constructs a new instance.
         *
         * @param key The entry's key.
         * @param value The entry's value.
         * @param bitIndex The entry's bitIndex.
         */
        public TrieEntry(final K key, final V value, final int bitIndex) {
            super(key, value);
            this.bitIndex = bitIndex;
            this.parent = null;
            this.left = this;
            this.right = null;
            this.predecessor = this;
        }

        /**
         * Whether the entry is storing a key.
         * Only the root can potentially be empty, all other
         * nodes must have a key.
         *
         * @return Whether the entry is storing a key
         */
        public boolean isEmpty() {
            return key == null;
        }

        /**
         * Whether the left or right child is a loopback.
         *
         * @return Whether the left or right child is a loopback.
         */
        public boolean isExternalNode() {
            return !isInternalNode();
        }

        /**
         * Tests that neither the left nor right child is a loopback.
         *
         * @return That neither the left nor right child is a loopback.
         */
        public boolean isInternalNode() {
            return left != this && right != this;
        }

        @Override
        public String toString() {
            final StringBuilder buffer = new StringBuilder();

            if (bitIndex == -1) {
                buffer.append("RootEntry(");
            } else {
                buffer.append("Entry(");
            }

            buffer.append("key=").append(getKey()).append(" [").append(bitIndex).append("], ");
            buffer.append("value=").append(getValue()).append(", ");
            //buffer.append("bitIndex=").append(bitIndex).append(", ");

            if (parent != null) {
                if (parent.bitIndex == -1) {
                    buffer.append("parent=").append("ROOT");
                } else {
                    buffer.append("parent=").append(parent.getKey()).append(" [").append(parent.bitIndex).append("]");
                }
            } else {
                buffer.append("parent=").append("null");
            }
            buffer.append(", ");

            if (left != null) {
                if (left.bitIndex == -1) {
                    buffer.append("left=").append("ROOT");
                } else {
                    buffer.append("left=").append(left.getKey()).append(" [").append(left.bitIndex).append("]");
                }
            } else {
                buffer.append("left=").append("null");
            }
            buffer.append(", ");

            if (right != null) {
                if (right.bitIndex == -1) {
                    buffer.append("right=").append("ROOT");
                } else {
                    buffer.append("right=").append(right.getKey()).append(" [").append(right.bitIndex).append("]");
                }
            } else {
                buffer.append("right=").append("null");
            }
            buffer.append(", ");

            if (predecessor != null) {
                if (predecessor.bitIndex == -1) {
                    buffer.append("predecessor=").append("ROOT");
                } else {
                    buffer.append("predecessor=").append(predecessor.getKey()).append(" [").
                           append(predecessor.bitIndex).append("]");
                }
            }

            buffer.append(")");
            return buffer.toString();
        }
    }

    /**
     * An {@link OrderedMapIterator} for a {@link org.apache.commons.collections4.Trie}.
     */
    private final class TrieMapIterator extends AbstractTrieIterator implements OrderedMapIterator {

        protected TrieEntry previous; // the previous node to return

        @Override
        public K getKey() {
            if (current == null) {
                throw new IllegalStateException();
            }
            return current.getKey();
        }

        @Override
        public V getValue() {
            if (current == null) {
                throw new IllegalStateException();
            }
            return current.getValue();
        }

        @Override
        public boolean hasPrevious() {
            return previous != null;
        }

        @Override
        public K next() {
            return nextEntry().getKey();
        }

        @Override
        protected TrieEntry nextEntry() {
            final TrieEntry nextEntry = super.nextEntry();
            previous = nextEntry;
            return nextEntry;
        }

        @Override
        public K previous() {
            return previousEntry().getKey();
        }

        protected TrieEntry previousEntry() {
            if (expectedModCount != AbstractPatriciaTrie.this.modCount) {
                throw new ConcurrentModificationException();
            }

            final TrieEntry e = previous;
            if (e == null) {
                throw new NoSuchElementException();
            }

            previous = AbstractPatriciaTrie.this.previousEntry(e);
            next = current;
            current = e;
            return current;
        }

        @Override
        public V setValue(final V value) {
            if (current == null) {
                throw new IllegalStateException();
            }
            return current.setValue(value);
        }

    }

    /**
     * This is a value view of the {@link org.apache.commons.collections4.Trie} as returned by {@link Map#values()}.
     */
    private final class Values extends AbstractCollection {

        /**
         * An {@link Iterator} that returns Value Objects.
         */
        private final class ValueIterator extends AbstractTrieIterator {
            @Override
            public V next() {
                return nextEntry().getValue();
            }
        }

        @Override
        public void clear() {
            AbstractPatriciaTrie.this.clear();
        }

        @Override
        public boolean contains(final Object o) {
            return containsValue(o);
        }

        @Override
        public Iterator iterator() {
            return new ValueIterator();
        }

        @Override
        public boolean remove(final Object o) {
            for (final Iterator it = iterator(); it.hasNext(); ) {
                final V value = it.next();
                if (compare(value, o)) {
                    it.remove();
                    return true;
                }
            }
            return false;
        }

        @Override
        public int size() {
            return AbstractPatriciaTrie.this.size();
        }
    }

    private static final long serialVersionUID = 5155253417231339498L;

    /**
     * Returns true if 'next' is a valid uplink coming from 'from'.
     */
    static boolean isValidUplink(final TrieEntry next, final TrieEntry from) {
        return next != null && next.bitIndex <= from.bitIndex && !next.isEmpty();
    }

    /** The root node of the {@link org.apache.commons.collections4.Trie}. */
    private transient TrieEntry root = new TrieEntry<>(null, null, -1);

    /**
     * Each of these fields are initialized to contain an instance of the
     * appropriate view the first time this view is requested. The views are
     * stateless, so there's no reason to create more than one of each.
     */
    private transient volatile Set keySet;

    private transient volatile Collection values;

    private transient volatile Set> entrySet;

    /** The current size of the {@link org.apache.commons.collections4.Trie}. */
    private transient int size;

    /**
     * The number of times this {@link org.apache.commons.collections4.Trie} has been modified.
     * It's used to detect concurrent modifications and fail-fast the {@link Iterator}s.
     */
    protected transient int modCount;

    /**
     * Constructs a new {@link Trie} using the given {@link KeyAnalyzer}.
     *
     * @param keyAnalyzer  the {@link KeyAnalyzer}.
     */
    protected AbstractPatriciaTrie(final KeyAnalyzer keyAnalyzer) {
        super(keyAnalyzer);
    }

    /**
     * Constructs a new {@link org.apache.commons.collections4.Trie} using the given {@link KeyAnalyzer} and initializes the
     * {@link org.apache.commons.collections4.Trie} with the values from the provided {@link Map}.
     *
     * @param keyAnalyzer  the {@link KeyAnalyzer}.
     * @param map The source map.
     */
    protected AbstractPatriciaTrie(final KeyAnalyzer keyAnalyzer, final Map map) {
        super(keyAnalyzer);
        putAll(map);
    }

    /**
     * Adds the given {@link TrieEntry} to the {@link org.apache.commons.collections4.Trie}.
     */
    TrieEntry addEntry(final TrieEntry entry, final int lengthInBits) {
        TrieEntry current = root.left;
        TrieEntry path = root;
        while (true) {
            if (current.bitIndex >= entry.bitIndex
                    || current.bitIndex <= path.bitIndex) {
                entry.predecessor = entry;

                if (!isBitSet(entry.key, entry.bitIndex, lengthInBits)) {
                    entry.left = entry;
                    entry.right = current;
                } else {
                    entry.left = current;
                    entry.right = entry;
                }

                entry.parent = path;
                if (current.bitIndex >= entry.bitIndex) {
                    current.parent = entry;
                }

                // if we inserted an uplink, set the predecessor on it
                if (current.bitIndex <= path.bitIndex) {
                    current.predecessor = entry;
                }

                if (path == root || !isBitSet(entry.key, path.bitIndex, lengthInBits)) {
                    path.left = entry;
                } else {
                    path.right = entry;
                }

                return entry;
            }

            path = current;

            if (!isBitSet(entry.key, current.bitIndex, lengthInBits)) {
                current = current.left;
            } else {
                current = current.right;
            }
        }
    }

    /**
     * Returns a key-value mapping associated with the least key greater
     * than or equal to the given key, or null if there is no such key.
     */
    TrieEntry ceilingEntry(final K key) {
        // Basically:
        // Follow the steps of adding an entry, but instead...
        //
        // - If we ever encounter a situation where we found an equal
        //   key, we return it immediately.
        //
        // - If we hit an empty root, return the first iterable item.
        //
        // - If we have to add a new item, we temporarily add it,
        //   find the successor to it, then remove the added item.
        //
        // These steps ensure that the returned value is either the
        // entry for the key itself, or the first entry directly after
        // the key.

        // TODO: Cleanup so that we don't actually have to add/remove from the
        //       tree.  (We do it here because there are other well-defined
        //       functions to perform the search.)
        final int lengthInBits = lengthInBits(key);

        if (lengthInBits == 0) {
            if (!root.isEmpty()) {
                return root;
            }
            return firstEntry();
        }

        final TrieEntry found = getNearestEntryForKey(key, lengthInBits);
        if (compareKeys(key, found.key)) {
            return found;
        }

        final int bitIndex = bitIndex(key, found.key);
        if (KeyAnalyzer.isValidBitIndex(bitIndex)) {
            final TrieEntry added = new TrieEntry<>(key, null, bitIndex);
            addEntry(added, lengthInBits);
            incrementSize(); // must increment because remove will decrement
            final TrieEntry ceil = nextEntry(added);
            removeEntry(added);
            modCount -= 2; // we didn't really modify it.
            return ceil;
        }
        if (KeyAnalyzer.isNullBitKey(bitIndex)) {
            if (!root.isEmpty()) {
                return root;
            }
            return firstEntry();
        }
        if (KeyAnalyzer.isEqualBitKey(bitIndex)) {
            return found;
        }

        // we should have exited above.
        throw new IllegalStateException("invalid lookup: " + key);
    }

    @Override
    public void clear() {
        root.key = null;
        root.bitIndex = -1;
        root.value = null;

        root.parent = null;
        root.left = root;
        root.right = null;
        root.predecessor = root;

        size = 0;
        incrementModCount();
    }

    @Override
    public Comparator comparator() {
        return getKeyAnalyzer();
    }

    @Override
    public boolean containsKey(final Object k) {
        if (k == null) {
            return false;
        }

        final K key = castKey(k);
        final int lengthInBits = lengthInBits(key);
        final TrieEntry entry = getNearestEntryForKey(key, lengthInBits);
        return !entry.isEmpty() && compareKeys(key, entry.key);
    }

    /**
     * A helper method to decrement the {@link org.apache.commons.collections4.Trie} size and increment the modification counter.
     */
    void decrementSize() {
        size--;
        incrementModCount();
    }

    @Override
    public Set> entrySet() {
        if (entrySet == null) {
            entrySet = new EntrySet();
        }
        return entrySet;
    }

    /**
     * Returns the first entry the {@link org.apache.commons.collections4.Trie} is storing.
     * 

* This is implemented by going always to the left until * we encounter a valid uplink. That uplink is the first key. */ TrieEntry firstEntry() { // if Trie is empty, no first node. if (isEmpty()) { return null; } return followLeft(root); } @Override public K firstKey() { if (isEmpty()) { throw new NoSuchElementException(); } return firstEntry().getKey(); } /** * Returns a key-value mapping associated with the greatest key * less than or equal to the given key, or null if there is no such key. */ TrieEntry floorEntry(final K key) { // TODO: Cleanup so that we don't actually have to add/remove from the // tree. (We do it here because there are other well-defined // functions to perform the search.) final int lengthInBits = lengthInBits(key); if (lengthInBits == 0) { if (!root.isEmpty()) { return root; } return null; } final TrieEntry found = getNearestEntryForKey(key, lengthInBits); if (compareKeys(key, found.key)) { return found; } final int bitIndex = bitIndex(key, found.key); if (KeyAnalyzer.isValidBitIndex(bitIndex)) { final TrieEntry added = new TrieEntry<>(key, null, bitIndex); addEntry(added, lengthInBits); incrementSize(); // must increment because remove will decrement final TrieEntry floor = previousEntry(added); removeEntry(added); modCount -= 2; // we didn't really modify it. return floor; } if (KeyAnalyzer.isNullBitKey(bitIndex)) { if (!root.isEmpty()) { return root; } return null; } if (KeyAnalyzer.isEqualBitKey(bitIndex)) { return found; } // we should have exited above. throw new IllegalStateException("invalid lookup: " + key); } /** * Goes left through the tree until it finds a valid node. */ TrieEntry followLeft(TrieEntry node) { while (true) { TrieEntry child = node.left; // if we hit root and it didn't have a node, go right instead. if (child.isEmpty()) { child = node.right; } if (child.bitIndex <= node.bitIndex) { return child; } node = child; } } /** * Traverses down the right path until it finds an uplink. */ TrieEntry followRight(TrieEntry node) { // if Trie is empty, no last entry. if (node.right == null) { return null; } // Go as far right as possible, until we encounter an uplink. while (node.right.bitIndex > node.bitIndex) { node = node.right; } return node.right; } @Override public V get(final Object k) { final TrieEntry entry = getEntry(k); return entry != null ? entry.getValue() : null; } /** * Returns the entry associated with the specified key in the * PatriciaTrieBase. Returns null if the map contains no mapping * for this key. *

* This may throw ClassCastException if the object is not of type K. */ TrieEntry getEntry(final Object k) { final K key = castKey(k); if (key == null) { return null; } final int lengthInBits = lengthInBits(key); final TrieEntry entry = getNearestEntryForKey(key, lengthInBits); return !entry.isEmpty() && compareKeys(key, entry.key) ? entry : null; } /** * Returns the nearest entry for a given key. This is useful * for finding knowing if a given key exists (and finding the value * for it), or for inserting the key. * * The actual get implementation. This is very similar to * selectR but with the exception that it might return the * root Entry even if it's empty. */ TrieEntry getNearestEntryForKey(final K key, final int lengthInBits) { TrieEntry current = root.left; TrieEntry path = root; while (true) { if (current.bitIndex <= path.bitIndex) { return current; } path = current; if (!isBitSet(key, current.bitIndex, lengthInBits)) { current = current.left; } else { current = current.right; } } } /** * Returns a view of this {@link org.apache.commons.collections4.Trie} of all elements that are prefixed * by the number of bits in the given Key. *

* The view that this returns is optimized to have a very efficient * {@link Iterator}. The {@link SortedMap#firstKey()}, * {@link SortedMap#lastKey()} & {@link Map#size()} methods must * iterate over all possible values in order to determine the results. * This information is cached until the PATRICIA {@link org.apache.commons.collections4.Trie} changes. * All other methods (except {@link Iterator}) must compare the given * key to the prefix to ensure that it is within the range of the view. * The {@link Iterator}'s remove method must also relocate the subtree * that contains the prefixes if the entry holding the subtree is * removed or changes. Changing the subtree takes O(K) time. * * @param key the key to use in the search * @param offsetInBits the prefix offset * @param lengthInBits the number of significant prefix bits * @return a {@link SortedMap} view of this {@link org.apache.commons.collections4.Trie} with all elements whose * key is prefixed by the search key */ private SortedMap getPrefixMapByBits(final K key, final int offsetInBits, final int lengthInBits) { final int offsetLength = offsetInBits + lengthInBits; if (offsetLength > lengthInBits(key)) { throw new IllegalArgumentException(offsetInBits + " + " + lengthInBits + " > " + lengthInBits(key)); } if (offsetLength == 0) { return this; } return new PrefixRangeMap(key, offsetInBits, lengthInBits); } @Override public SortedMap headMap(final K toKey) { return new RangeEntryMap(null, toKey); } /** * Returns an entry strictly higher than the given key, * or null if no such entry exists. */ TrieEntry higherEntry(final K key) { // TODO: Cleanup so that we don't actually have to add/remove from the // tree. (We do it here because there are other well-defined // functions to perform the search.) final int lengthInBits = lengthInBits(key); if (lengthInBits == 0) { if (!root.isEmpty()) { // If data in root, and more after -- return it. if (size() > 1) { return nextEntry(root); } // If no more after, no higher entry. return null; } // Root is empty & we want something after empty, return first. return firstEntry(); } final TrieEntry found = getNearestEntryForKey(key, lengthInBits); if (compareKeys(key, found.key)) { return nextEntry(found); } final int bitIndex = bitIndex(key, found.key); if (KeyAnalyzer.isValidBitIndex(bitIndex)) { final TrieEntry added = new TrieEntry<>(key, null, bitIndex); addEntry(added, lengthInBits); incrementSize(); // must increment because remove will decrement final TrieEntry ceil = nextEntry(added); removeEntry(added); modCount -= 2; // we didn't really modify it. return ceil; } if (KeyAnalyzer.isNullBitKey(bitIndex)) { if (!root.isEmpty()) { return firstEntry(); } if (size() > 1) { return nextEntry(firstEntry()); } return null; } if (KeyAnalyzer.isEqualBitKey(bitIndex)) { return nextEntry(found); } // we should have exited above. throw new IllegalStateException("invalid lookup: " + key); } /** * A helper method to increment the modification counter. */ private void incrementModCount() { ++modCount; } /** * A helper method to increment the {@link org.apache.commons.collections4.Trie} size and the modification counter. */ void incrementSize() { size++; incrementModCount(); } @Override public Set keySet() { if (keySet == null) { keySet = new KeySet(); } return keySet; } /** * Returns the last entry the {@link org.apache.commons.collections4.Trie} is storing. * *

This is implemented by going always to the right until * we encounter a valid uplink. That uplink is the last key. */ TrieEntry lastEntry() { return followRight(root.left); } @Override public K lastKey() { final TrieEntry entry = lastEntry(); if (entry != null) { return entry.getKey(); } throw new NoSuchElementException(); } /** * Returns a key-value mapping associated with the greatest key * strictly less than the given key, or null if there is no such key. */ TrieEntry lowerEntry(final K key) { // Basically: // Follow the steps of adding an entry, but instead... // // - If we ever encounter a situation where we found an equal // key, we return it's previousEntry immediately. // // - If we hit root (empty or not), return null. // // - If we have to add a new item, we temporarily add it, // find the previousEntry to it, then remove the added item. // // These steps ensure that the returned value is always just before // the key or null (if there was nothing before it). // TODO: Cleanup so that we don't actually have to add/remove from the // tree. (We do it here because there are other well-defined // functions to perform the search.) final int lengthInBits = lengthInBits(key); if (lengthInBits == 0) { return null; // there can never be anything before root. } final TrieEntry found = getNearestEntryForKey(key, lengthInBits); if (compareKeys(key, found.key)) { return previousEntry(found); } final int bitIndex = bitIndex(key, found.key); if (KeyAnalyzer.isValidBitIndex(bitIndex)) { final TrieEntry added = new TrieEntry<>(key, null, bitIndex); addEntry(added, lengthInBits); incrementSize(); // must increment because remove will decrement final TrieEntry prior = previousEntry(added); removeEntry(added); modCount -= 2; // we didn't really modify it. return prior; } if (KeyAnalyzer.isNullBitKey(bitIndex)) { return null; } if (KeyAnalyzer.isEqualBitKey(bitIndex)) { return previousEntry(found); } // we should have exited above. throw new IllegalStateException("invalid lookup: " + key); } @Override public OrderedMapIterator mapIterator() { return new TrieMapIterator(); } /** * Returns the entry lexicographically after the given entry. * If the given entry is null, returns the first node. */ TrieEntry nextEntry(final TrieEntry node) { if (node == null) { return firstEntry(); } return nextEntryImpl(node.predecessor, node, null); } /** * Scans for the next node, starting at the specified point, and using 'previous' * as a hint that the last node we returned was 'previous' (so we know not to return * it again). If 'tree' is non-null, this will limit the search to the given tree. * * The basic premise is that each iteration can follow the following steps: * * 1) Scan all the way to the left. * a) If we already started from this node last time, proceed to Step 2. * b) If a valid uplink is found, use it. * c) If the result is an empty node (root not set), break the scan. * d) If we already returned the left node, break the scan. * * 2) Check the right. * a) If we already returned the right node, proceed to Step 3. * b) If it is a valid uplink, use it. * c) Do Step 1 from the right node. * * 3) Back up through the parents until we encounter find a parent * that we're not the right child of. * * 4) If there's no right child of that parent, the iteration is finished. * Otherwise continue to Step 5. * * 5) Check to see if the right child is a valid uplink. * a) If we already returned that child, proceed to Step 6. * Otherwise, use it. * * 6) If the right child of the parent is the parent itself, we've * already found & returned the end of the Trie, so exit. * * 7) Do Step 1 on the parent's right child. */ TrieEntry nextEntryImpl(final TrieEntry start, final TrieEntry previous, final TrieEntry tree) { TrieEntry current = start; // Only look at the left if this was a recursive or // the first check, otherwise we know we've already looked // at the left. if (previous == null || start != previous.predecessor) { while (!current.left.isEmpty()) { // stop traversing if we've already // returned the left of this node. if (previous == current.left) { break; } if (isValidUplink(current.left, current)) { return current.left; } current = current.left; } } // If there's no data at all, exit. if (current.isEmpty()) { return null; } // If we've already returned the left, // and the immediate right is null, // there's only one entry in the Trie // which is stored at the root. // // / ("") <-- root // \_/ \ // null <-- 'current' // if (current.right == null) { return null; } // If nothing valid on the left, try the right. if (previous != current.right) { // See if it immediately is valid. if (isValidUplink(current.right, current)) { return current.right; } // Must search on the right's side if it wasn't initially valid. return nextEntryImpl(current.right, previous, tree); } // Neither left nor right are valid, find the first parent // whose child did not come from the right & traverse it. while (current == current.parent.right) { // If we're going to traverse to above the subtree, stop. if (current == tree) { return null; } current = current.parent; } // If we're on the top of the subtree, we can't go any higher. if (current == tree) { return null; } // If there's no right, the parent must be root, so we're done. if (current.parent.right == null) { return null; } // If the parent's right points to itself, we've found one. if (previous != current.parent.right && isValidUplink(current.parent.right, current.parent)) { return current.parent.right; } // If the parent's right is itself, there can't be any more nodes. if (current.parent.right == current.parent) { return null; } // We need to traverse down the parent's right's path. return nextEntryImpl(current.parent.right, previous, tree); } /** * Returns the entry lexicographically after the given entry. * If the given entry is null, returns the first node. * * This will traverse only within the subtree. If the given node * is not within the subtree, this will have undefined results. */ TrieEntry nextEntryInSubtree(final TrieEntry node, final TrieEntry parentOfSubtree) { if (node == null) { return firstEntry(); } return nextEntryImpl(node.predecessor, node, parentOfSubtree); } @Override public K nextKey(final K key) { Objects.requireNonNull(key, "key"); final TrieEntry entry = getEntry(key); if (entry != null) { final TrieEntry nextEntry = nextEntry(entry); return nextEntry != null ? nextEntry.getKey() : null; } return null; } @Override public SortedMap prefixMap(final K key) { return getPrefixMapByBits(key, 0, lengthInBits(key)); } /** * Returns the node lexicographically before the given node (or null if none). * * This follows four simple branches: * - If the uplink that returned us was a right uplink: * - If predecessor's left is a valid uplink from predecessor, return it. * - Else, follow the right path from the predecessor's left. * - If the uplink that returned us was a left uplink: * - Loop back through parents until we encounter a node where * node != node.parent.left. * - If node.parent.left is uplink from node.parent: * - If node.parent.left is not root, return it. * - If it is root & root isEmpty, return null. * - If it is root & root !isEmpty, return root. * - If node.parent.left is not uplink from node.parent: * - Follow right path for first right child from node.parent.left * * @param start the start entry */ TrieEntry previousEntry(final TrieEntry start) { if (start.predecessor == null) { throw new IllegalArgumentException("must have come from somewhere!"); } if (start.predecessor.right == start) { if (isValidUplink(start.predecessor.left, start.predecessor)) { return start.predecessor.left; } return followRight(start.predecessor.left); } TrieEntry node = start.predecessor; while (node.parent != null && node == node.parent.left) { node = node.parent; } if (node.parent == null) { // can be null if we're looking up root. return null; } if (isValidUplink(node.parent.left, node.parent)) { if (node.parent.left == root) { if (root.isEmpty()) { return null; } return root; } return node.parent.left; } return followRight(node.parent.left); } @Override public K previousKey(final K key) { Objects.requireNonNull(key, "key"); final TrieEntry entry = getEntry(key); if (entry != null) { final TrieEntry prevEntry = previousEntry(entry); return prevEntry != null ? prevEntry.getKey() : null; } return null; } @Override public V put(final K key, final V value) { Objects.requireNonNull(key, "key"); final int lengthInBits = lengthInBits(key); // The only place to store a key with a length // of zero bits is the root node if (lengthInBits == 0) { if (root.isEmpty()) { incrementSize(); } else { incrementModCount(); } return root.setKeyValue(key, value); } final TrieEntry found = getNearestEntryForKey(key, lengthInBits); if (compareKeys(key, found.key)) { if (found.isEmpty()) { // <- must be the root incrementSize(); } else { incrementModCount(); } return found.setKeyValue(key, value); } final int bitIndex = bitIndex(key, found.key); if (!KeyAnalyzer.isOutOfBoundsIndex(bitIndex)) { if (KeyAnalyzer.isValidBitIndex(bitIndex)) { // in 99.999...9% the case /* NEW KEY+VALUE TUPLE */ final TrieEntry t = new TrieEntry<>(key, value, bitIndex); addEntry(t, lengthInBits); incrementSize(); return null; } if (KeyAnalyzer.isNullBitKey(bitIndex)) { // A bits of the Key are zero. The only place to // store such a Key is the root Node! /* NULL BIT KEY */ if (root.isEmpty()) { incrementSize(); } else { incrementModCount(); } return root.setKeyValue(key, value); } if (KeyAnalyzer.isEqualBitKey(bitIndex) && found != root) { // NOPMD incrementModCount(); return found.setKeyValue(key, value); } } throw new IllegalArgumentException("Failed to put: " + key + " -> " + value + ", " + bitIndex); } /** * Deserializes an instance from an ObjectInputStream. * * @param in The source ObjectInputStream. * @throws IOException Any of the usual Input/Output related exceptions. * @throws ClassNotFoundException A class of a serialized object cannot be found. */ @SuppressWarnings("unchecked") // This will fail at runtime if the stream is incorrect private void readObject(final ObjectInputStream in) throws IOException, ClassNotFoundException { in.defaultReadObject(); root = new TrieEntry<>(null, null, -1); final int size = in.readInt(); for (int i = 0; i < size; i++) { final K k = (K) in.readObject(); final V v = (V) in.readObject(); put(k, v); } } /** * {@inheritDoc} * * @throws ClassCastException if provided key is of an incompatible type */ @Override public V remove(final Object k) { if (k == null) { return null; } final K key = castKey(k); final int lengthInBits = lengthInBits(key); TrieEntry current = root.left; TrieEntry path = root; while (true) { if (current.bitIndex <= path.bitIndex) { if (!current.isEmpty() && compareKeys(key, current.key)) { return removeEntry(current); } return null; } path = current; if (!isBitSet(key, current.bitIndex, lengthInBits)) { current = current.left; } else { current = current.right; } } } /** * Removes a single entry from the {@link org.apache.commons.collections4.Trie}. * * If we found a Key (Entry h) then figure out if it's * an internal (hard to remove) or external Entry (easy * to remove) */ V removeEntry(final TrieEntry h) { if (h != root) { if (h.isInternalNode()) { removeInternalEntry(h); } else { removeExternalEntry(h); } } decrementSize(); return h.setKeyValue(null, null); } /** * Removes an external entry from the {@link org.apache.commons.collections4.Trie}. * * If it's an external Entry then just remove it. * This is very easy and straight forward. */ private void removeExternalEntry(final TrieEntry h) { if (h == root) { throw new IllegalArgumentException("Cannot delete root Entry!"); } if (!h.isExternalNode()) { throw new IllegalArgumentException(h + " is not an external Entry!"); } final TrieEntry parent = h.parent; final TrieEntry child = h.left == h ? h.right : h.left; if (parent.left == h) { parent.left = child; } else { parent.right = child; } // either the parent is changing, or the predecessor is changing. if (child.bitIndex > parent.bitIndex) { child.parent = parent; } else { child.predecessor = parent; } } /** * Removes an internal entry from the {@link org.apache.commons.collections4.Trie}. * * If it's an internal Entry then "good luck" with understanding * this code. The Idea is essentially that Entry p takes Entry h's * place in the trie which requires some re-wiring. */ private void removeInternalEntry(final TrieEntry h) { if (h == root) { throw new IllegalArgumentException("Cannot delete root Entry!"); } if (!h.isInternalNode()) { throw new IllegalArgumentException(h + " is not an internal Entry!"); } final TrieEntry p = h.predecessor; // Set P's bitIndex p.bitIndex = h.bitIndex; // Fix P's parent, predecessor and child Nodes { final TrieEntry parent = p.parent; final TrieEntry child = p.left == h ? p.right : p.left; // if it was looping to itself previously, // it will now be pointed from its parent // (if we aren't removing its parent -- // in that case, it remains looping to itself). // otherwise, it will continue to have the same // predecessor. if (p.predecessor == p && p.parent != h) { p.predecessor = p.parent; } if (parent.left == p) { parent.left = child; } else { parent.right = child; } if (child.bitIndex > parent.bitIndex) { child.parent = parent; } } // Fix H's parent and child Nodes { // If H is a parent of its left and right child // then change them to P if (h.left.parent == h) { h.left.parent = p; } if (h.right.parent == h) { h.right.parent = p; } // Change H's parent if (h.parent.left == h) { h.parent.left = p; } else { h.parent.right = p; } } // Copy the remaining fields from H to P //p.bitIndex = h.bitIndex; p.parent = h.parent; p.left = h.left; p.right = h.right; // Make sure that if h was pointing to any uplinks, // p now points to them. if (isValidUplink(p.left, p)) { p.left.predecessor = p; } if (isValidUplink(p.right, p)) { p.right.predecessor = p; } } /** * Returns the {@link java.util.Map.Entry} whose key is closest in a bitwise XOR * metric to the given key. This is NOT lexicographic closeness. * For example, given the keys: * *

    *
  1. D = 1000100 *
  2. H = 1001000 *
  3. L = 1001100 *
* * If the {@link org.apache.commons.collections4.Trie} contained 'H' and 'L', a lookup of 'D' would * return 'L', because the XOR distance between D & L is smaller * than the XOR distance between D & H. * * @param key the key to use in the search * @return the {@link java.util.Map.Entry} whose key is closest in a bitwise XOR metric * to the provided key */ public Map.Entry select(final K key) { final int lengthInBits = lengthInBits(key); final Reference> reference = new Reference<>(); if (!selectR(root.left, -1, key, lengthInBits, reference)) { return reference.get(); } return null; } /** * Returns the key that is closest in a bitwise XOR metric to the * provided key. This is NOT lexicographic closeness! * * For example, given the keys: * *
    *
  1. D = 1000100 *
  2. H = 1001000 *
  3. L = 1001100 *
* * If the {@link org.apache.commons.collections4.Trie} contained 'H' and 'L', a lookup of 'D' would * return 'L', because the XOR distance between D & L is smaller * than the XOR distance between D & H. * * @param key the key to use in the search * @return the key that is closest in a bitwise XOR metric to the provided key */ public K selectKey(final K key) { final Map.Entry entry = select(key); if (entry == null) { return null; } return entry.getKey(); } private boolean selectR(final TrieEntry h, final int bitIndex, final K key, final int lengthInBits, final Reference> reference) { if (h.bitIndex <= bitIndex) { // If we hit the root Node and it is empty // we have to look for an alternative best // matching node. if (!h.isEmpty()) { reference.set(h); return false; } return true; } if (!isBitSet(key, h.bitIndex, lengthInBits)) { if (selectR(h.left, h.bitIndex, key, lengthInBits, reference)) { return selectR(h.right, h.bitIndex, key, lengthInBits, reference); } } else if (selectR(h.right, h.bitIndex, key, lengthInBits, reference)) { return selectR(h.left, h.bitIndex, key, lengthInBits, reference); } return false; } /** * Returns the value whose key is closest in a bitwise XOR metric to * the provided key. This is NOT lexicographic closeness! * * For example, given the keys: * *
    *
  1. D = 1000100 *
  2. H = 1001000 *
  3. L = 1001100 *
* * If the {@link org.apache.commons.collections4.Trie} contained 'H' and 'L', a lookup of 'D' would * return 'L', because the XOR distance between D & L is smaller * than the XOR distance between D & H. * * @param key the key to use in the search * @return the value whose key is closest in a bitwise XOR metric * to the provided key */ public V selectValue(final K key) { final Map.Entry entry = select(key); if (entry == null) { return null; } return entry.getValue(); } @Override public int size() { return size; } @Override public SortedMap subMap(final K fromKey, final K toKey) { return new RangeEntryMap(fromKey, toKey); } /** * Finds the subtree that contains the prefix. * * This is very similar to getR but with the difference that * we stop the lookup if h.bitIndex > lengthInBits. */ TrieEntry subtree(final K prefix, final int offsetInBits, final int lengthInBits) { TrieEntry current = root.left; TrieEntry path = root; while (true) { if (current.bitIndex <= path.bitIndex || lengthInBits <= current.bitIndex) { break; } path = current; if (!isBitSet(prefix, offsetInBits + current.bitIndex, offsetInBits + lengthInBits)) { current = current.left; } else { current = current.right; } } // Make sure the entry is valid for a subtree. final TrieEntry entry = current.isEmpty() ? path : current; // If entry is root, it can't be empty. if (entry.isEmpty()) { return null; } final int endIndexInBits = offsetInBits + lengthInBits; // if root && length of root is less than length of lookup, // there's nothing. // (this prevents returning the whole subtree if root has an empty // string and we want to lookup things with "\0") if (entry == root && lengthInBits(entry.getKey()) < endIndexInBits) { return null; } // Found key's length-th bit differs from our key // which means it cannot be the prefix... if (isBitSet(prefix, endIndexInBits - 1, endIndexInBits) != isBitSet(entry.key, lengthInBits - 1, lengthInBits(entry.key))) { return null; } // ... or there are less than 'length' equal bits final int bitIndex = getKeyAnalyzer().bitIndex(prefix, offsetInBits, lengthInBits, entry.key, 0, lengthInBits(entry.getKey())); if (bitIndex >= 0 && bitIndex < lengthInBits) { return null; } return entry; } @Override public SortedMap tailMap(final K fromKey) { return new RangeEntryMap(fromKey, null); } @Override public Collection values() { if (values == null) { values = new Values(); } return values; } /** * Serializes this object to an ObjectOutputStream. * * @param out the target ObjectOutputStream. * @throws IOException thrown when an I/O errors occur writing to the target stream. */ private void writeObject(final ObjectOutputStream out) throws IOException { out.defaultWriteObject(); out.writeInt(this.size()); for (final Entry entry : entrySet()) { out.writeObject(entry.getKey()); out.writeObject(entry.getValue()); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy