All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.configuration2.AbstractConfiguration Maven / Gradle / Ivy

Go to download

Tools to assist in the reading of configuration/preferences files in various formats

There is a newer version: 2.10.1
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.configuration2;

import java.math.BigDecimal;
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Properties;
import java.util.concurrent.atomic.AtomicReference;

import org.apache.commons.configuration2.convert.ConversionHandler;
import org.apache.commons.configuration2.convert.DefaultConversionHandler;
import org.apache.commons.configuration2.convert.DisabledListDelimiterHandler;
import org.apache.commons.configuration2.convert.ListDelimiterHandler;
import org.apache.commons.configuration2.event.BaseEventSource;
import org.apache.commons.configuration2.event.ConfigurationErrorEvent;
import org.apache.commons.configuration2.event.ConfigurationEvent;
import org.apache.commons.configuration2.event.EventListener;
import org.apache.commons.configuration2.ex.ConversionException;
import org.apache.commons.configuration2.interpol.ConfigurationInterpolator;
import org.apache.commons.configuration2.interpol.InterpolatorSpecification;
import org.apache.commons.configuration2.interpol.Lookup;
import org.apache.commons.configuration2.io.ConfigurationLogger;
import org.apache.commons.configuration2.sync.LockMode;
import org.apache.commons.configuration2.sync.NoOpSynchronizer;
import org.apache.commons.configuration2.sync.Synchronizer;
import org.apache.commons.lang3.ClassUtils;
import org.apache.commons.lang3.ObjectUtils;

/**
 * 

Abstract configuration class. Provides basic functionality but does not * store any data.

*

If you want to write your own Configuration class then you should * implement only abstract methods from this class. A lot of functionality * needed by typical implementations of the {@code Configuration} * interface is already provided by this base class. Following is a list of * features implemented here:

*
  • Data conversion support. The various data types required by the * {@code Configuration} interface are already handled by this base class. * A concrete sub class only needs to provide a generic {@code getProperty()} * method.
  • *
  • Support for variable interpolation. Property values containing special * variable tokens (like ${var}) will be replaced by their * corresponding values.
  • *
  • Optional support for string lists. The values of properties to be added to this * configuration are checked whether they contain a list delimiter character. If * this is the case and if list splitting is enabled, the string is split and * multiple values are added for this property. List splitting is controlled * by a {@link ListDelimiterHandler} object which can be set using the * {@link #setListDelimiterHandler(ListDelimiterHandler)} method. It is * disabled per default. To enable this feature, set a suitable * {@code ListDelimiterHandler}, e.g. an instance of * {@link org.apache.commons.configuration2.convert.DefaultListDelimiterHandler * DefaultListDelimiterHandler} configured with the desired list delimiter character.
  • *
  • Allows specifying how missing properties are treated. Per default the * get methods returning an object will return null if the searched * property key is not found (and no default value is provided). With the * {@code setThrowExceptionOnMissing()} method this behavior can be * changed to throw an exception when a requested property cannot be found.
  • *
  • Basic event support. Whenever this configuration is modified registered * event listeners are notified. Refer to the various {@code EVENT_XXX} * constants to get an impression about which event types are supported.
  • *
  • Support for proper synchronization based on the {@link Synchronizer} * interface.
  • *
*

* Most methods defined by the {@code Configuration} interface are already * implemented in this class. Many method implementations perform basic * book-keeping tasks (e.g. firing events, handling synchronization), and then * delegate to other (protected) methods executing the actual work. Subclasses * override these protected methods to define or adapt behavior. The public * entry point methods are final to prevent subclasses from breaking basic * functionality. *

* * @author Konstantin Shaposhnikov * @author Henning P. Schmiedehausen * @version $Id: AbstractConfiguration.java 1779754 2017-01-21 20:22:44Z oheger $ */ public abstract class AbstractConfiguration extends BaseEventSource implements Configuration { /** The list delimiter handler. */ private ListDelimiterHandler listDelimiterHandler; /** The conversion handler. */ private ConversionHandler conversionHandler; /** * Whether the configuration should throw NoSuchElementExceptions or simply * return null when a property does not exist. Defaults to return null. */ private boolean throwExceptionOnMissing; /** Stores a reference to the object that handles variable interpolation. */ private AtomicReference interpolator; /** The object responsible for synchronization. */ private volatile Synchronizer synchronizer; /** The object used for dealing with encoded property values. */ private ConfigurationDecoder configurationDecoder; /** Stores the logger.*/ private ConfigurationLogger log; /** * Creates a new instance of {@code AbstractConfiguration}. */ public AbstractConfiguration() { interpolator = new AtomicReference(); initLogger(null); installDefaultInterpolator(); listDelimiterHandler = DisabledListDelimiterHandler.INSTANCE; conversionHandler = DefaultConversionHandler.INSTANCE; } /** * Returns the {@code ListDelimiterHandler} used by this instance. * * @return the {@code ListDelimiterHandler} * @since 2.0 */ public ListDelimiterHandler getListDelimiterHandler() { return listDelimiterHandler; } /** *

* Sets the {@code ListDelimiterHandler} to be used by this instance. This * object is invoked every time when dealing with string properties that may * contain a list delimiter and thus have to be split to multiple values. * Per default, a {@code ListDelimiterHandler} implementation is set which * does not support list splitting. This can be changed for instance by * setting a {@link org.apache.commons.configuration2.convert.DefaultListDelimiterHandler * DefaultListDelimiterHandler} object. *

*

* Warning: Be careful when changing the list delimiter * handler when the configuration has already been loaded/populated. List * handling is typically applied already when properties are added to the * configuration. If later another handler is set which processes lists * differently, results may be unexpected; some operations may even cause * exceptions. *

* * @param listDelimiterHandler the {@code ListDelimiterHandler} to be used * (must not be null) * @throws IllegalArgumentException if the {@code ListDelimiterHandler} is * null * @since 2.0 */ public void setListDelimiterHandler( ListDelimiterHandler listDelimiterHandler) { if (listDelimiterHandler == null) { throw new IllegalArgumentException( "List delimiter handler must not be null!"); } this.listDelimiterHandler = listDelimiterHandler; } /** * Returns the {@code ConversionHandler} used by this instance. * * @return the {@code ConversionHandler} * @since 2.0 */ public ConversionHandler getConversionHandler() { return conversionHandler; } /** * Sets the {@code ConversionHandler} to be used by this instance. The * {@code ConversionHandler} is responsible for every kind of data type * conversion. It is consulted by all get methods returning results in * specific data types. A newly created configuration uses a default * {@code ConversionHandler} implementation. This can be changed while * initializing the configuration (e.g. via a builder). Note that access to * this property is not synchronized. * * @param conversionHandler the {@code ConversionHandler} to be used (must * not be null) * @throws IllegalArgumentException if the {@code ConversionHandler} is * null * @since 2.0 */ public void setConversionHandler(ConversionHandler conversionHandler) { if (conversionHandler == null) { throw new IllegalArgumentException( "ConversionHandler must not be null!"); } this.conversionHandler = conversionHandler; } /** * Allows to set the {@code throwExceptionOnMissing} flag. This * flag controls the behavior of property getter methods that return * objects if the requested property is missing. If the flag is set to * false (which is the default value), these methods will return * null. If set to true, they will throw a * {@code NoSuchElementException} exception. Note that getter methods * for primitive data types are not affected by this flag. * * @param throwExceptionOnMissing The new value for the property */ public void setThrowExceptionOnMissing(boolean throwExceptionOnMissing) { this.throwExceptionOnMissing = throwExceptionOnMissing; } /** * Returns true if missing values throw Exceptions. * * @return true if missing values throw Exceptions */ public boolean isThrowExceptionOnMissing() { return throwExceptionOnMissing; } /** * Returns the {@code ConfigurationInterpolator} object that manages the * lookup objects for resolving variables. * * @return the {@code ConfigurationInterpolator} associated with this * configuration * @since 1.4 */ @Override public ConfigurationInterpolator getInterpolator() { return interpolator.get(); } /** * {@inheritDoc} This implementation sets the passed in object without * further modifications. A null argument is allowed; this disables * interpolation. * * @since 2.0 */ @Override public final void setInterpolator(ConfigurationInterpolator ci) { interpolator.set(ci); } /** * {@inheritDoc} This implementation creates a new * {@code ConfigurationInterpolator} instance and initializes it with the * given {@code Lookup} objects. In addition, it adds a specialized default * {@code Lookup} object which queries this {@code Configuration}. * * @since 2.0 */ @Override public final void installInterpolator( Map prefixLookups, Collection defLookups) { InterpolatorSpecification spec = new InterpolatorSpecification.Builder() .withPrefixLookups(prefixLookups) .withDefaultLookups(defLookups) .withDefaultLookup(new ConfigurationLookup(this)) .create(); setInterpolator(ConfigurationInterpolator.fromSpecification(spec)); } /** * Registers all {@code Lookup} objects in the given map at the current * {@code ConfigurationInterpolator} of this configuration. The set of * default lookup objects (for variables without a prefix) is not modified * by this method. If this configuration does not have a * {@code ConfigurationInterpolator}, a new instance is created. Note: This * method is mainly intended to be used for initializing a configuration * when it is created by a builder. Normal client code should better call * {@link #installInterpolator(Map, Collection)} to define the * {@code ConfigurationInterpolator} in a single step. * * @param lookups a map with new {@code Lookup} objects and their prefixes * (may be null) * @since 2.0 */ public void setPrefixLookups(Map lookups) { boolean success; do { // do this in a loop because the ConfigurationInterpolator // instance may be changed by another thread ConfigurationInterpolator ciOld = getInterpolator(); ConfigurationInterpolator ciNew = (ciOld != null) ? ciOld : new ConfigurationInterpolator(); ciNew.registerLookups(lookups); success = interpolator.compareAndSet(ciOld, ciNew); } while (!success); } /** * Adds all {@code Lookup} objects in the given collection as default * lookups (i.e. lookups without a variable prefix) to the * {@code ConfigurationInterpolator} object of this configuration. In * addition, it adds a specialized default {@code Lookup} object which * queries this {@code Configuration}. The set of {@code Lookup} objects * with prefixes is not modified by this method. If this configuration does * not have a {@code ConfigurationInterpolator}, a new instance is created. * Note: This method is mainly intended to be used for initializing a * configuration when it is created by a builder. Normal client code should * better call {@link #installInterpolator(Map, Collection)} to define the * {@code ConfigurationInterpolator} in a single step. * * @param lookups the collection with default {@code Lookup} objects to be * added * @since 2.0 */ public void setDefaultLookups(Collection lookups) { boolean success; do { ConfigurationInterpolator ciOld = getInterpolator(); ConfigurationInterpolator ciNew = (ciOld != null) ? ciOld : new ConfigurationInterpolator(); Lookup confLookup = findConfigurationLookup(ciNew); if (confLookup == null) { confLookup = new ConfigurationLookup(this); } else { ciNew.removeDefaultLookup(confLookup); } ciNew.addDefaultLookups(lookups); ciNew.addDefaultLookup(confLookup); success = interpolator.compareAndSet(ciOld, ciNew); } while (!success); } /** * Sets the specified {@code ConfigurationInterpolator} as the parent of * this configuration's {@code ConfigurationInterpolator}. If this * configuration does not have a {@code ConfigurationInterpolator}, a new * instance is created. Note: This method is mainly intended to be used for * initializing a configuration when it is created by a builder. Normal * client code can directly update the {@code ConfigurationInterpolator}. * * @param parent the parent {@code ConfigurationInterpolator} to be set * @since 2.0 */ public void setParentInterpolator(ConfigurationInterpolator parent) { boolean success; do { ConfigurationInterpolator ciOld = getInterpolator(); ConfigurationInterpolator ciNew = (ciOld != null) ? ciOld : new ConfigurationInterpolator(); ciNew.setParentInterpolator(parent); success = interpolator.compareAndSet(ciOld, ciNew); } while (!success); } /** * Sets the {@code ConfigurationDecoder} for this configuration. This object * is used by {@link #getEncodedString(String)}. * * @param configurationDecoder the {@code ConfigurationDecoder} * @since 2.0 */ public void setConfigurationDecoder( ConfigurationDecoder configurationDecoder) { this.configurationDecoder = configurationDecoder; } /** * Returns the {@code ConfigurationDecoder} used by this instance. * * @return the {@code ConfigurationDecoder} * @since 2.0 */ public ConfigurationDecoder getConfigurationDecoder() { return configurationDecoder; } /** * Creates a clone of the {@code ConfigurationInterpolator} used by this * instance. This method can be called by {@code clone()} implementations of * derived classes. Normally, the {@code ConfigurationInterpolator} of a * configuration instance must not be shared with other instances because it * contains a specific {@code Lookup} object pointing to the owning * configuration. This has to be taken into account when cloning a * configuration. This method creates a new * {@code ConfigurationInterpolator} for this configuration instance which * contains all lookup objects from the original * {@code ConfigurationInterpolator} except for the configuration specific * lookup pointing to the passed in original configuration. This one is * replaced by a corresponding {@code Lookup} referring to this * configuration. * * @param orgConfig the original configuration from which this one was * cloned * @since 2.0 */ protected void cloneInterpolator(AbstractConfiguration orgConfig) { interpolator = new AtomicReference(); ConfigurationInterpolator orgInterpolator = orgConfig.getInterpolator(); List defaultLookups = orgInterpolator.getDefaultLookups(); Lookup lookup = findConfigurationLookup(orgInterpolator, orgConfig); if (lookup != null) { defaultLookups.remove(lookup); } installInterpolator(orgInterpolator.getLookups(), defaultLookups); } /** * Creates a default {@code ConfigurationInterpolator} which is initialized * with all default {@code Lookup} objects. This method is called by the * constructor. It ensures that default interpolation works for every new * configuration instance. */ private void installDefaultInterpolator() { installInterpolator( ConfigurationInterpolator.getDefaultPrefixLookups(), null); } /** * Finds a {@code ConfigurationLookup} pointing to this configuration in the * default lookups of the specified {@code ConfigurationInterpolator}. This * method is called to ensure that there is exactly one default lookup * querying this configuration. * * @param ci the {@code ConfigurationInterpolator} in question * @return the found {@code Lookup} object or null */ private Lookup findConfigurationLookup(ConfigurationInterpolator ci) { return findConfigurationLookup(ci, this); } /** * Finds a {@code ConfigurationLookup} pointing to the specified * configuration in the default lookups for the specified * {@code ConfigurationInterpolator}. * * @param ci the {@code ConfigurationInterpolator} in question * @param targetConf the target configuration of the searched lookup * @return the found {@code Lookup} object or null */ private static Lookup findConfigurationLookup(ConfigurationInterpolator ci, ImmutableConfiguration targetConf) { for (Lookup l : ci.getDefaultLookups()) { if (l instanceof ConfigurationLookup) { if (targetConf == ((ConfigurationLookup) l).getConfiguration()) { return l; } } } return null; } /** * Returns the logger used by this configuration object. * * @return the logger * @since 2.0 */ public ConfigurationLogger getLogger() { return log; } /** * Allows setting the logger to be used by this configuration object. This * method makes it possible for clients to exactly control logging behavior. * Per default a logger is set that will ignore all log messages. Derived * classes that want to enable logging should call this method during their * initialization with the logger to be used. It is legal to pass a * null logger; in this case, logging will be disabled. * * @param log the new logger * @since 2.0 */ public void setLogger(ConfigurationLogger log) { initLogger(log); } /** * Adds a special {@link EventListener} object to this configuration that * will log all internal errors. This method is intended to be used by * certain derived classes, for which it is known that they can fail on * property access (e.g. {@code DatabaseConfiguration}). * * @since 1.4 */ public final void addErrorLogListener() { addEventListener(ConfigurationErrorEvent.ANY, new EventListener() { @Override public void onEvent(ConfigurationErrorEvent event) { getLogger().warn("Internal error", event.getCause()); } }); } /** * Returns the object responsible for synchronizing this configuration. All * access to this configuration - both read and write access - is controlled * by this object. This implementation never returns null. If no * {@code Synchronizer} has been set, a {@link NoOpSynchronizer} is * returned. So, per default, instances of {@code AbstractConfiguration} are * not thread-safe unless a suitable {@code Synchronizer} is set! * * @return the {@code Synchronizer} used by this instance * @since 2.0 */ @Override public final Synchronizer getSynchronizer() { Synchronizer sync = synchronizer; return (sync != null) ? sync : NoOpSynchronizer.INSTANCE; } /** * Sets the object responsible for synchronizing this configuration. This * method has to be called with a suitable {@code Synchronizer} object when * initializing this configuration instance in order to make it thread-safe. * * @param synchronizer the new {@code Synchronizer}; can be null, * then this instance uses a {@link NoOpSynchronizer} * @since 2.0 */ @Override public final void setSynchronizer(Synchronizer synchronizer) { this.synchronizer = synchronizer; } /** * {@inheritDoc} This implementation delegates to {@code beginRead()} or * {@code beginWrite()}, depending on the {@code LockMode} argument. * Subclasses can override these protected methods to perform additional * steps when a configuration is locked. * * @since 2.0 * @throws NullPointerException if the argument is null */ @Override public final void lock(LockMode mode) { switch (mode) { case READ: beginRead(false); break; case WRITE: beginWrite(false); break; default: throw new IllegalArgumentException("Unsupported LockMode: " + mode); } } /** * {@inheritDoc} This implementation delegates to {@code endRead()} or * {@code endWrite()}, depending on the {@code LockMode} argument. * Subclasses can override these protected methods to perform additional * steps when a configuration's lock is released. * * @throws NullPointerException if the argument is null */ @Override public final void unlock(LockMode mode) { switch (mode) { case READ: endRead(); break; case WRITE: endWrite(); break; default: throw new IllegalArgumentException("Unsupported LockMode: " + mode); } } /** * Notifies this configuration's {@link Synchronizer} that a read operation * is about to start. This method is called by all methods which access this * configuration in a read-only mode. Subclasses may override it to perform * additional actions before this read operation. The boolean * optimize argument can be evaluated by overridden methods in * derived classes. Some operations which require a lock do not need a fully * initialized configuration object. By setting this flag to * true, such operations can give a corresponding hint. An * overridden implementation of {@code beginRead()} can then decide to skip * some initialization steps. All basic operations in this class (and most * of the basic {@code Configuration} implementations) call this method with * a parameter value of false. In any case the * inherited method must be called! Otherwise, proper synchronization is not * guaranteed. * * @param optimize a flag whether optimization can be performed * @since 2.0 */ protected void beginRead(boolean optimize) { getSynchronizer().beginRead(); } /** * Notifies this configuration's {@link Synchronizer} that a read operation * has finished. This method is called by all methods which access this * configuration in a read-only manner at the end of their execution. * Subclasses may override it to perform additional actions after this read * operation. In any case the inherited method must be called! * Otherwise, the read lock will not be released. * * @since 2.0 */ protected void endRead() { getSynchronizer().endRead(); } /** * Notifies this configuration's {@link Synchronizer} that an update * operation is about to start. This method is called by all methods which * modify this configuration. Subclasses may override it to perform * additional operations before an update. For a description of the boolean * optimize argument refer to the documentation of * {@code beginRead()}. In any case the inherited method must be * called! Otherwise, proper synchronization is not guaranteed. * * @param optimize a flag whether optimization can be performed * @see #beginRead(boolean) * @since 2.0 */ protected void beginWrite(boolean optimize) { getSynchronizer().beginWrite(); } /** * Notifies this configuration's {@link Synchronizer} that an update * operation has finished. This method is called by all methods which modify * this configuration at the end of their execution. Subclasses may override * it to perform additional operations after an update. In any case * the inherited method must be called! Otherwise, the write lock will not * be released. * * @since 2.0 */ protected void endWrite() { getSynchronizer().endWrite(); } @Override public final void addProperty(String key, Object value) { beginWrite(false); try { fireEvent(ConfigurationEvent.ADD_PROPERTY, key, value, true); addPropertyInternal(key, value); fireEvent(ConfigurationEvent.ADD_PROPERTY, key, value, false); } finally { endWrite(); } } /** * Actually adds a property to this configuration. This method is called by * {@code addProperty()}. It performs list splitting if necessary and * delegates to {@link #addPropertyDirect(String, Object)} for every single * property value. * * @param key the key of the property to be added * @param value the new property value * @since 2.0 */ protected void addPropertyInternal(String key, Object value) { for (Object obj : getListDelimiterHandler().parse(value)) { addPropertyDirect(key, obj); } } /** * Adds a key/value pair to the Configuration. Override this method to * provide write access to underlying Configuration store. * * @param key key to use for mapping * @param value object to store */ protected abstract void addPropertyDirect(String key, Object value); /** * interpolate key names to handle ${key} stuff * * @param base string to interpolate * * @return returns the key name with the ${key} substituted */ protected String interpolate(String base) { Object result = interpolate((Object) base); return (result == null) ? null : result.toString(); } /** * Returns the interpolated value. This implementation delegates to the * current {@code ConfigurationInterpolator}. If no * {@code ConfigurationInterpolator} is set, the passed in value is returned * without changes. * * @param value the value to interpolate * @return the value with variables substituted */ protected Object interpolate(Object value) { ConfigurationInterpolator ci = getInterpolator(); return (ci != null) ? ci.interpolate(value) : value; } @Override public Configuration subset(String prefix) { return new SubsetConfiguration(this, prefix, "."); } @Override public ImmutableConfiguration immutableSubset(String prefix) { return ConfigurationUtils.unmodifiableConfiguration(subset(prefix)); } @Override public final void setProperty(String key, Object value) { beginWrite(false); try { fireEvent(ConfigurationEvent.SET_PROPERTY, key, value, true); setPropertyInternal(key, value); fireEvent(ConfigurationEvent.SET_PROPERTY, key, value, false); } finally { endWrite(); } } /** * Actually sets the value of a property. This method is called by * {@code setProperty()}. It provides a default implementation of this * functionality by clearing the specified key and delegating to * {@code addProperty()}. Subclasses should override this method if they can * provide a more efficient algorithm for setting a property value. * * @param key the property key * @param value the new property value * @since 2.0 */ protected void setPropertyInternal(String key, Object value) { setDetailEvents(false); try { clearProperty(key); addProperty(key, value); } finally { setDetailEvents(true); } } /** * Removes the specified property from this configuration. This * implementation performs some preparations and then delegates to * {@code clearPropertyDirect()}, which will do the real work. * * @param key the key to be removed */ @Override public final void clearProperty(String key) { beginWrite(false); try { fireEvent(ConfigurationEvent.CLEAR_PROPERTY, key, null, true); clearPropertyDirect(key); fireEvent(ConfigurationEvent.CLEAR_PROPERTY, key, null, false); } finally { endWrite(); } } /** * Removes the specified property from this configuration. This method is * called by {@code clearProperty()} after it has done some * preparations. It must be overridden in sub classes. * * @param key the key to be removed */ protected abstract void clearPropertyDirect(String key); @Override public final void clear() { beginWrite(false); try { fireEvent(ConfigurationEvent.CLEAR, null, null, true); clearInternal(); fireEvent(ConfigurationEvent.CLEAR, null, null, false); } finally { endWrite(); } } /** * Clears the whole configuration. This method is called by {@code clear()} * after some preparations have been made. This base implementation uses * the iterator provided by {@code getKeys()} to remove every single * property. Subclasses should override this method if there is a more * efficient way of clearing the configuration. */ protected void clearInternal() { setDetailEvents(false); boolean useIterator = true; try { Iterator it = getKeys(); while (it.hasNext()) { String key = it.next(); if (useIterator) { try { it.remove(); } catch (UnsupportedOperationException usoex) { useIterator = false; } } if (useIterator && containsKey(key)) { useIterator = false; } if (!useIterator) { // workaround for Iterators that do not remove the // property // on calling remove() or do not support remove() at all clearProperty(key); } } } finally { setDetailEvents(true); } } /** * {@inheritDoc} This implementation takes care of synchronization and then * delegates to {@code getKeysInternal()} for obtaining the actual iterator. * Note that depending on a concrete implementation, an iteration may fail * if the configuration is updated concurrently. */ @Override public final Iterator getKeys() { beginRead(false); try { return getKeysInternal(); } finally { endRead(); } } /** * {@inheritDoc} This implementation returns keys that either match the * prefix or start with the prefix followed by a dot ('.'). So the call * {@code getKeys("db");} will find the keys {@code db}, * {@code db.user}, or {@code db.password}, but not the key * {@code dbdriver}. */ @Override public final Iterator getKeys(String prefix) { beginRead(false); try { return getKeysInternal(prefix); } finally { endRead(); } } /** * Actually creates an iterator for iterating over the keys in this * configuration. This method is called by {@code getKeys()}, it has to be * defined by concrete subclasses. * * @return an {@code Iterator} with all property keys in this configuration * @since 2.0 */ protected abstract Iterator getKeysInternal(); /** * Returns an {@code Iterator} with all property keys starting with the * specified prefix. This method is called by {@link #getKeys(String)}. It * is fully implemented by delegating to {@code getKeysInternal()} and * returning a special iterator which filters for the passed in prefix. * Subclasses can override it if they can provide a more efficient way to * iterate over specific keys only. * * @param prefix the prefix for the keys to be taken into account * @return an {@code Iterator} returning the filtered keys * @since 2.0 */ protected Iterator getKeysInternal(String prefix) { return new PrefixedKeysIterator(getKeysInternal(), prefix); } /** * {@inheritDoc} This implementation ensures proper synchronization. * Subclasses have to define the abstract {@code getPropertyInternal()} * method which is called from here. */ @Override public final Object getProperty(String key) { beginRead(false); try { return getPropertyInternal(key); } finally { endRead(); } } /** * Actually obtains the value of the specified property. This method is * called by {@code getProperty()}. Concrete subclasses must define it to * fetch the value of the desired property. * * @param key the key of the property in question * @return the (raw) value of this property * @since 2.0 */ protected abstract Object getPropertyInternal(String key); /** * {@inheritDoc} This implementation handles synchronization and delegates * to {@code isEmptyInternal()}. */ @Override public final boolean isEmpty() { beginRead(false); try { return isEmptyInternal(); } finally { endRead(); } } /** * Actually checks whether this configuration contains data. This method is * called by {@code isEmpty()}. It has to be defined by concrete subclasses. * * @return true if this configuration contains no data, false * otherwise * @since 2.0 */ protected abstract boolean isEmptyInternal(); /** * {@inheritDoc} This implementation handles synchronization and delegates * to {@code sizeInternal()}. */ @Override public final int size() { beginRead(false); try { return sizeInternal(); } finally { endRead(); } } /** * Actually calculates the size of this configuration. This method is called * by {@code size()} with a read lock held. The base implementation provided * here calculates the size based on the iterator returned by * {@code getKeys()}. Sub classes which can determine the size in a more * efficient way should override this method. * * @return the size of this configuration (i.e. the number of keys) */ protected int sizeInternal() { int size = 0; for (Iterator keyIt = getKeysInternal(); keyIt.hasNext(); size++) { keyIt.next(); } return size; } /** * {@inheritDoc} This implementation handles synchronization and delegates * to {@code containsKeyInternal()}. */ @Override public final boolean containsKey(String key) { beginRead(false); try { return containsKeyInternal(key); } finally { endRead(); } } /** * Actually checks whether the specified key is contained in this * configuration. This method is called by {@code containsKey()}. It has to * be defined by concrete subclasses. * * @param key the key in question * @return true if this key is contained in this configuration, * false otherwise * @since 2.0 */ protected abstract boolean containsKeyInternal(String key); @Override public Properties getProperties(String key) { return getProperties(key, null); } /** * Get a list of properties associated with the given configuration key. * * @param key The configuration key. * @param defaults Any default values for the returned * {@code Properties} object. Ignored if {@code null}. * * @return The associated properties if key is found. * * @throws ConversionException is thrown if the key maps to an object that * is not a String/List of Strings. * * @throws IllegalArgumentException if one of the tokens is malformed (does * not contain an equals sign). */ public Properties getProperties(String key, Properties defaults) { /* * Grab an array of the tokens for this key. */ String[] tokens = getStringArray(key); /* * Each token is of the form 'key=value'. */ Properties props = defaults == null ? new Properties() : new Properties(defaults); for (String token : tokens) { int equalSign = token.indexOf('='); if (equalSign > 0) { String pkey = token.substring(0, equalSign).trim(); String pvalue = token.substring(equalSign + 1).trim(); props.put(pkey, pvalue); } else if (tokens.length == 1 && "".equals(token)) { // Semantically equivalent to an empty Properties // object. break; } else { throw new IllegalArgumentException('\'' + token + "' does not contain an equals sign"); } } return props; } @Override public boolean getBoolean(String key) { Boolean b = convert(Boolean.class, key, null, true); return checkNonNullValue(key, b).booleanValue(); } @Override public boolean getBoolean(String key, boolean defaultValue) { return getBoolean(key, Boolean.valueOf(defaultValue)).booleanValue(); } /** * Obtains the value of the specified key and tries to convert it into a * {@code Boolean} object. If the property has no value, the passed * in default value will be used. * * @param key the key of the property * @param defaultValue the default value * @return the value of this key converted to a {@code Boolean} * @throws ConversionException if the value cannot be converted to a * {@code Boolean} */ @Override public Boolean getBoolean(String key, Boolean defaultValue) { return convert(Boolean.class, key, defaultValue, false); } @Override public byte getByte(String key) { Byte b = convert(Byte.class, key, null, true); return checkNonNullValue(key, b).byteValue(); } @Override public byte getByte(String key, byte defaultValue) { return getByte(key, Byte.valueOf(defaultValue)).byteValue(); } @Override public Byte getByte(String key, Byte defaultValue) { return convert(Byte.class, key, defaultValue, false); } @Override public double getDouble(String key) { Double d = convert(Double.class, key, null, true); return checkNonNullValue(key, d).doubleValue(); } @Override public double getDouble(String key, double defaultValue) { return getDouble(key, Double.valueOf(defaultValue)).doubleValue(); } @Override public Double getDouble(String key, Double defaultValue) { return convert(Double.class, key, defaultValue, false); } @Override public float getFloat(String key) { Float f = convert(Float.class, key, null, true); return checkNonNullValue(key, f).floatValue(); } @Override public float getFloat(String key, float defaultValue) { return getFloat(key, Float.valueOf(defaultValue)).floatValue(); } @Override public Float getFloat(String key, Float defaultValue) { return convert(Float.class, key, defaultValue, false); } @Override public int getInt(String key) { Integer i = convert(Integer.class, key, null, true); return checkNonNullValue(key, i).intValue(); } @Override public int getInt(String key, int defaultValue) { return getInteger(key, Integer.valueOf(defaultValue)).intValue(); } @Override public Integer getInteger(String key, Integer defaultValue) { return convert(Integer.class, key, defaultValue, false); } @Override public long getLong(String key) { Long l = convert(Long.class, key, null, true); return checkNonNullValue(key, l).longValue(); } @Override public long getLong(String key, long defaultValue) { return getLong(key, Long.valueOf(defaultValue)).longValue(); } @Override public Long getLong(String key, Long defaultValue) { return convert(Long.class, key, defaultValue, false); } @Override public short getShort(String key) { Short s = convert(Short.class, key, null, true); return checkNonNullValue(key, s).shortValue(); } @Override public short getShort(String key, short defaultValue) { return getShort(key, Short.valueOf(defaultValue)).shortValue(); } @Override public Short getShort(String key, Short defaultValue) { return convert(Short.class, key, defaultValue, false); } /** * {@inheritDoc} * @see #setThrowExceptionOnMissing(boolean) */ @Override public BigDecimal getBigDecimal(String key) { return convert(BigDecimal.class, key, null, true); } @Override public BigDecimal getBigDecimal(String key, BigDecimal defaultValue) { return convert(BigDecimal.class, key, defaultValue, false); } /** * {@inheritDoc} * @see #setThrowExceptionOnMissing(boolean) */ @Override public BigInteger getBigInteger(String key) { return convert(BigInteger.class, key, null, true); } @Override public BigInteger getBigInteger(String key, BigInteger defaultValue) { return convert(BigInteger.class, key, defaultValue, false); } /** * {@inheritDoc} * @see #setThrowExceptionOnMissing(boolean) */ @Override public String getString(String key) { return convert(String.class, key, null, true); } @Override public String getString(String key, String defaultValue) { String result = convert(String.class, key, null, false); return (result != null) ? result : interpolate(defaultValue); } /** * {@inheritDoc} This implementation delegates to {@link #getString(String)} * in order to obtain the value of the passed in key. This value is passed * to the decoder. Because {@code getString()} is used behind the scenes all * standard features like handling of missing keys and interpolation work as * expected. */ @Override public String getEncodedString(String key, ConfigurationDecoder decoder) { if (decoder == null) { throw new IllegalArgumentException( "ConfigurationDecoder must not be null!"); } String value = getString(key); return (value != null) ? decoder.decode(value) : null; } /** * {@inheritDoc} This implementation makes use of the * {@code ConfigurationDecoder} set for this configuration. If no such * object has been set, an {@code IllegalStateException} exception is * thrown. * * @throws IllegalStateException if no {@code ConfigurationDecoder} is set * @see #setConfigurationDecoder(ConfigurationDecoder) */ @Override public String getEncodedString(String key) { ConfigurationDecoder decoder = getConfigurationDecoder(); if (decoder == null) { throw new IllegalStateException( "No default ConfigurationDecoder defined!"); } return getEncodedString(key, decoder); } /** * Get an array of strings associated with the given configuration key. * If the key doesn't map to an existing object, an empty array is returned. * When a property is added to a configuration, it is checked whether it * contains multiple values. This is obvious if the added object is a list * or an array. For strings the association {@link ListDelimiterHandler} is * consulted to find out whether the string can be split into multiple * values. * * @param key The configuration key. * @return The associated string array if key is found. * * @throws ConversionException is thrown if the key maps to an * object that is not a String/List of Strings. * @see #setListDelimiterHandler(ListDelimiterHandler) */ @Override public String[] getStringArray(String key) { String[] result = (String[]) getArray(String.class, key); return (result == null) ? new String[0] : result; } /** * {@inheritDoc} * @see #getStringArray(String) */ @Override public List getList(String key) { return getList(key, new ArrayList()); } @Override public List getList(String key, List defaultValue) { Object value = getProperty(key); List list; if (value instanceof String) { list = new ArrayList(1); list.add(interpolate((String) value)); } else if (value instanceof List) { list = new ArrayList(); List l = (List) value; // add the interpolated elements in the new list for (Object elem : l) { list.add(interpolate(elem)); } } else if (value == null) { // This is okay because we just return this list to the caller @SuppressWarnings("unchecked") List resultList = (List) defaultValue; list = resultList; } else if (value.getClass().isArray()) { return Arrays.asList((Object[]) value); } else if (isScalarValue(value)) { return Collections.singletonList((Object) value.toString()); } else { throw new ConversionException('\'' + key + "' doesn't map to a List object: " + value + ", a " + value.getClass().getName()); } return list; } @Override public T get(Class cls, String key) { return convert(cls, key, null, true); } /** * {@inheritDoc} This implementation delegates to the * {@link ConversionHandler} to perform the actual type conversion. */ @Override public T get(Class cls, String key, T defaultValue) { return convert(cls, key, defaultValue, false); } @Override public Object getArray(Class cls, String key) { return getArray(cls, key, null); } /** * {@inheritDoc} This implementation delegates to the * {@link ConversionHandler} to perform the actual type conversion. If this * results in a null result (because the property is undefined), the * default value is returned. It is checked whether the default value is an * array with the correct component type. If not, an exception is thrown. * * @throws IllegalArgumentException if the default value is not a compatible * array */ @Override public Object getArray(Class cls, String key, Object defaultValue) { return convertToArray(cls, key, defaultValue); } @Override public List getList(Class cls, String key) { return getList(cls, key, null); } /** * {@inheritDoc} This implementation delegates to the generic * {@code getCollection()}. As target collection a newly created * {@code ArrayList} is passed in. */ @Override public List getList(Class cls, String key, List defaultValue) { List result = new ArrayList(); if (getCollection(cls, key, result, defaultValue) == null) { return null; } return result; } @Override public Collection getCollection(Class cls, String key, Collection target) { return getCollection(cls, key, target, null); } /** * {@inheritDoc} This implementation delegates to the * {@link ConversionHandler} to perform the actual conversion. If no target * collection is provided, an {@code ArrayList} is created. */ @Override public Collection getCollection(Class cls, String key, Collection target, Collection defaultValue) { Object src = getProperty(key); if (src == null) { return handleDefaultCollection(target, defaultValue); } Collection targetCol = (target != null) ? target : new ArrayList(); getConversionHandler().toCollection(src, cls, getInterpolator(), targetCol); return targetCol; } /** * Checks whether the specified object is a scalar value. This method is * called by {@code getList()} and {@code getStringArray()} if the * property requested is not a string, a list, or an array. If it returns * true, the calling method transforms the value to a string and * returns a list or an array with this single element. This implementation * returns true if the value is of a wrapper type for a primitive * type. * * @param value the value to be checked * @return a flag whether the value is a scalar * @since 1.7 */ protected boolean isScalarValue(Object value) { return ClassUtils.wrapperToPrimitive(value.getClass()) != null; } /** * Copies the content of the specified configuration into this * configuration. If the specified configuration contains a key that is also * present in this configuration, the value of this key will be replaced by * the new value. Note: This method won't work well when copying * hierarchical configurations because it is not able to copy information * about the properties' structure (i.e. the parent-child-relationships will * get lost). So when dealing with hierarchical configuration objects their * {@link BaseHierarchicalConfiguration#clone() clone()} methods * should be used. * * @param c the configuration to copy (can be null, then this * operation will have no effect) * @since 1.5 */ public void copy(Configuration c) { if (c != null) { c.lock(LockMode.READ); try { for (Iterator it = c.getKeys(); it.hasNext();) { String key = it.next(); Object value = encodeForCopy(c.getProperty(key)); setProperty(key, value); } } finally { c.unlock(LockMode.READ); } } } /** * Appends the content of the specified configuration to this configuration. * The values of all properties contained in the specified configuration * will be appended to this configuration. So if a property is already * present in this configuration, its new value will be a union of the * values in both configurations. Note: This method won't work * well when appending hierarchical configurations because it is not able to * copy information about the properties' structure (i.e. the * parent-child-relationships will get lost). So when dealing with * hierarchical configuration objects their * {@link BaseHierarchicalConfiguration#clone() clone()} methods * should be used. * * @param c the configuration to be appended (can be null, then this * operation will have no effect) * @since 1.5 */ public void append(Configuration c) { if (c != null) { c.lock(LockMode.READ); try { for (Iterator it = c.getKeys(); it.hasNext();) { String key = it.next(); Object value = encodeForCopy(c.getProperty(key)); addProperty(key, value); } } finally { c.unlock(LockMode.READ); } } } /** * Returns a configuration with the same content as this configuration, but * with all variables replaced by their actual values. This method tries to * clone the configuration and then perform interpolation on all properties. * So property values of the form ${var} will be resolved as * far as possible (if a variable cannot be resolved, it remains unchanged). * This operation is useful if the content of a configuration is to be * exported or processed by an external component that does not support * variable interpolation. * * @return a configuration with all variables interpolated * @throws org.apache.commons.configuration2.ex.ConfigurationRuntimeException if this * configuration cannot be cloned * @since 1.5 */ public Configuration interpolatedConfiguration() { // first clone this configuration AbstractConfiguration c = (AbstractConfiguration) ConfigurationUtils .cloneConfiguration(this); // now perform interpolation c.setListDelimiterHandler(new DisabledListDelimiterHandler()); for (Iterator it = getKeys(); it.hasNext();) { String key = it.next(); c.setProperty(key, getList(key)); } c.setListDelimiterHandler(getListDelimiterHandler()); return c; } /** * Initializes the logger. Supports null input. This method can be * called by derived classes in order to enable logging. * * @param log the logger * @since 2.0 */ protected final void initLogger(ConfigurationLogger log) { this.log = (log != null) ? log : ConfigurationLogger.newDummyLogger(); } /** * Encodes a property value so that it can be added to this configuration. * This method deals with list delimiters. The passed in object has to be * escaped so that an add operation yields the same result. If it is a list, * all of its values have to be escaped. * * @param value the value to be encoded * @return the encoded value */ private Object encodeForCopy(Object value) { if (value instanceof Collection) { return encodeListForCopy((Collection) value); } return getListDelimiterHandler().escape(value, ListDelimiterHandler.NOOP_TRANSFORMER); } /** * Encodes a list with property values so that it can be added to this * configuration. This method calls {@code encodeForCopy()} for all list * elements. * * @param values the list to be encoded * @return a list with encoded elements */ private Object encodeListForCopy(Collection values) { List result = new ArrayList(values.size()); for (Object value : values) { result.add(encodeForCopy(value)); } return result; } /** * Obtains the property value for the specified key and converts it to the * given target class. * * @param the target type of the conversion * @param cls the target class * @param key the key of the desired property * @param defaultValue a default value * @return the converted value of this property * @throws ConversionException if the conversion cannot be performed */ private T getAndConvertProperty(Class cls, String key, T defaultValue) { Object value = getProperty(key); try { return ObjectUtils.defaultIfNull( getConversionHandler().to(value, cls, getInterpolator()), defaultValue); } catch (ConversionException cex) { // improve error message throw new ConversionException( String.format( "Key '%s' cannot be converted to class %s. Value is: '%s'.", key, cls.getName(), String.valueOf(value))); } } /** * Helper method for obtaining a property value with a type conversion. * * @param the target type of the conversion * @param cls the target class * @param key the key of the desired property * @param defValue a default value * @param throwOnMissing a flag whether an exception should be thrown for a * missing value * @return the converted value */ private T convert(Class cls, String key, T defValue, boolean throwOnMissing) { if (cls.isArray()) { return cls.cast(convertToArray(cls.getComponentType(), key, defValue)); } T result = getAndConvertProperty(cls, key, defValue); if (result == null) { if (throwOnMissing && isThrowExceptionOnMissing()) { throwMissingPropertyException(key); } return defValue; } return result; } /** * Performs a conversion to an array result class. This implementation * delegates to the {@link ConversionHandler} to perform the actual type * conversion. If this results in a null result (because the property * is undefined), the default value is returned. It is checked whether the * default value is an array with the correct component type. If not, an * exception is thrown. * * @param cls the component class of the array * @param key the configuration key * @param defaultValue an optional default value * @return the converted array * @throws IllegalArgumentException if the default value is not a compatible * array */ private Object convertToArray(Class cls, String key, Object defaultValue) { checkDefaultValueArray(cls, defaultValue); return ObjectUtils.defaultIfNull(getConversionHandler().toArray( getProperty(key), cls, getInterpolator()), defaultValue); } /** * Checks an object provided as default value for the {@code getArray()} * method. Throws an exception if this is not an array with the correct * component type. * * @param cls the component class for the array * @param defaultValue the default value object to be checked * @throws IllegalArgumentException if this is not a valid default object */ private static void checkDefaultValueArray(Class cls, Object defaultValue) { if (defaultValue != null && (!defaultValue.getClass().isArray() || !cls .isAssignableFrom(defaultValue.getClass() .getComponentType()))) { throw new IllegalArgumentException( "The type of the default value (" + defaultValue.getClass() + ")" + " is not an array of the specified class (" + cls + ")"); } } /** * Handles the default collection for a collection conversion. This method * fills the target collection with the content of the default collection. * Both collections may be null. * * @param target the target collection * @param defaultValue the default collection * @return the initialized target collection */ private static Collection handleDefaultCollection(Collection target, Collection defaultValue) { if (defaultValue == null) { return null; } Collection result; if (target == null) { result = new ArrayList(defaultValue); } else { target.addAll(defaultValue); result = target; } return result; } /** * Checks whether the specified value is null and throws an exception * in this case. This method is used by conversion methods returning * primitive Java types. Here values to be returned must not be null. * * @param the type of the object to be checked * @param key the key which caused the problem * @param value the value to be checked * @return the passed in value for chaining this method call * @throws NoSuchElementException if the value is null */ private static T checkNonNullValue(String key, T value) { if (value == null) { throwMissingPropertyException(key); } return value; } /** * Helper method for throwing an exception for a key that does not map to an * existing object. * * @param key the key (to be part of the error message) */ private static void throwMissingPropertyException(String key) { throw new NoSuchElementException(String.format( "Key '%s' does not map to an existing object!", key)); } }