org.apache.commons.geometry.euclidean.threed.EmbeddingPlane Maven / Gradle / Ivy
Show all versions of commons-geometry-euclidean Show documentation
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.geometry.euclidean.threed;
import java.util.Objects;
import org.apache.commons.geometry.core.Transform;
import org.apache.commons.geometry.core.partitioning.EmbeddingHyperplane;
import org.apache.commons.geometry.euclidean.threed.rotation.QuaternionRotation;
import org.apache.commons.geometry.euclidean.twod.AffineTransformMatrix2D;
import org.apache.commons.geometry.euclidean.twod.Vector2D;
import org.apache.commons.numbers.core.Precision;
/** Extension of the {@link Plane} class that supports embedding of 2D subspaces in the plane.
* This is accomplished by defining two additional vectors, {@link #getU() u} and {@link #getV() v},
* that define the {@code x} and {@code y} axes respectively of the embedded subspace. For completeness,
* an additional vector {@link #getW()} is defined, which is simply an alias for the plane normal.
* Together, the vectors {@code u}, {@code v}, and {@code w} form a right-handed orthonormal basis.
*
* The additional {@code u} and {@code v} vectors are not required to fulfill the contract of
* {@link org.apache.commons.geometry.core.partitioning.Hyperplane Hyperplane}. Therefore, they
* are not considered when using instances of this type purely as a hyperplane. For example, the
* {@link Plane#eq(Plane, Precision.DoubleEquivalence) eq} and
* {@link Plane#similarOrientation(org.apache.commons.geometry.core.partitioning.Hyperplane) similiarOrientation}
* methods do not consider them.
*/
public final class EmbeddingPlane extends Plane implements EmbeddingHyperplane {
/** First normalized vector of the plane frame (in plane). */
private final Vector3D.Unit u;
/** Second normalized vector of the plane frame (in plane). */
private final Vector3D.Unit v;
/** Construct a new instance from an orthonormal set of basis vectors and an origin offset.
* @param u first vector of the basis (in plane)
* @param v second vector of the basis (in plane)
* @param w third vector of the basis (plane normal)
* @param originOffset offset of the origin with respect to the plane.
* @param precision precision context used for floating point comparisons
*/
EmbeddingPlane(final Vector3D.Unit u, final Vector3D.Unit v, final Vector3D.Unit w, final double originOffset,
final Precision.DoubleEquivalence precision) {
super(w, originOffset, precision);
this.u = u;
this.v = v;
}
/** Get the plane first canonical vector.
*
* The frame defined by ({@link #getU u}, {@link #getV v},
* {@link #getW w}) is a right-handed orthonormalized frame).
*
* @return normalized first canonical vector
* @see #getV
* @see #getW
* @see #getNormal
*/
public Vector3D.Unit getU() {
return u;
}
/** Get the plane second canonical vector.
*
* The frame defined by ({@link #getU u}, {@link #getV v},
* {@link #getW w}) is a right-handed orthonormalized frame).
*
* @return normalized second canonical vector
* @see #getU
* @see #getW
* @see #getNormal
*/
public Vector3D.Unit getV() {
return v;
}
/** Get the plane third canonical vector, ie, the plane normal. This
* method is simply an alias for {@link #getNormal()}.
*
* The frame defined by {@link #getU() u}, {@link #getV() v},
* {@link #getW() w} is a right-handed orthonormalized frame.
*
* @return normalized normal vector
* @see #getU()
* @see #getV()
* @see #getNormal()
*/
public Vector3D.Unit getW() {
return getNormal();
}
/** Return the current instance.
*/
@Override
public EmbeddingPlane getEmbedding() {
return this;
}
/** Transform a 3D space point into an in-plane point.
* @param point point of the space
* @return in-plane point
* @see #toSpace
*/
@Override
public Vector2D toSubspace(final Vector3D point) {
return Vector2D.of(point.dot(u), point.dot(v));
}
/** Transform an in-plane point into a 3D space point.
* @param point in-plane point
* @return 3D space point
* @see #toSubspace(Vector3D)
*/
@Override
public Vector3D toSpace(final Vector2D point) {
return Vector3D.Sum.create()
.addScaled(point.getX(), u)
.addScaled(point.getY(), v)
.addScaled(-getOriginOffset(), getNormal()).get();
}
/** Get one point from the 3D-space.
* @param inPlane desired in-plane coordinates for the point in the plane
* @param offset desired offset for the point
* @return one point in the 3D-space, with given coordinates and offset relative
* to the plane
*/
public Vector3D pointAt(final Vector2D inPlane, final double offset) {
return Vector3D.Sum.create()
.addScaled(inPlane.getX(), u)
.addScaled(inPlane.getY(), v)
.addScaled(offset - getOriginOffset(), getNormal()).get();
}
/** Build a new reversed version of this plane, with opposite orientation.
*
* The new plane frame is chosen in such a way that a 3D point that had
* {@code (x, y)} in-plane coordinates and {@code z} offset with respect to the
* plane and is unaffected by the change will have {@code (y, x)} in-plane
* coordinates and {@code -z} offset with respect to the new plane. This means
* that the {@code u} and {@code v} vectors returned by the {@link #getU} and
* {@link #getV} methods are exchanged, and the {@code w} vector returned by the
* {@link #getNormal} method is reversed.
*
* @return a new reversed plane
*/
@Override
public EmbeddingPlane reverse() {
return new EmbeddingPlane(v, u, getNormal().negate(), -getOriginOffset(), getPrecision());
}
/** {@inheritDoc} */
@Override
public EmbeddingPlane transform(final Transform transform) {
final Vector3D origin = getOrigin();
final Vector3D plusU = origin.add(u);
final Vector3D plusV = origin.add(v);
final Vector3D tOrigin = transform.apply(origin);
final Vector3D tPlusU = transform.apply(plusU);
final Vector3D tPlusV = transform.apply(plusV);
final Vector3D.Unit tU = tOrigin.directionTo(tPlusU);
final Vector3D.Unit tV = tOrigin.directionTo(tPlusV);
final Vector3D.Unit tW = tU.cross(tV).normalize();
final double tOriginOffset = -tOrigin.dot(tW);
return new EmbeddingPlane(tU, tV, tW, tOriginOffset, getPrecision());
}
/** Translate the plane by the specified amount.
* @param translation translation to apply
* @return a new plane
*/
@Override
public EmbeddingPlane translate(final Vector3D translation) {
final Vector3D tOrigin = getOrigin().add(translation);
return Planes.fromPointAndPlaneVectors(tOrigin, u, v, getPrecision());
}
/** Rotate the plane around the specified point.
* @param center rotation center
* @param rotation 3-dimensional rotation
* @return a new rotated plane
*/
@Override
public EmbeddingPlane rotate(final Vector3D center, final QuaternionRotation rotation) {
final Vector3D delta = getOrigin().subtract(center);
final Vector3D tOrigin = center.add(rotation.apply(delta));
final Vector3D.Unit tU = rotation.apply(u).normalize();
final Vector3D.Unit tV = rotation.apply(v).normalize();
return Planes.fromPointAndPlaneVectors(tOrigin, tU, tV, getPrecision());
}
/** {@inheritDoc} */
@Override
public int hashCode() {
return Objects.hash(getNormal(), getOriginOffset(), u, v, getPrecision());
}
/** {@inheritDoc} */
@Override
public boolean equals(final Object obj) {
if (this == obj) {
return true;
} else if (obj == null || obj.getClass() != EmbeddingPlane.class) {
return false;
}
final EmbeddingPlane other = (EmbeddingPlane) obj;
return Objects.equals(this.getNormal(), other.getNormal()) &&
Double.compare(this.getOriginOffset(), other.getOriginOffset()) == 0 &&
Objects.equals(this.u, other.u) &&
Objects.equals(this.v, other.v) &&
Objects.equals(this.getPrecision(), other.getPrecision());
}
/** {@inheritDoc} */
@Override
public String toString() {
final StringBuilder sb = new StringBuilder();
sb.append(getClass().getSimpleName())
.append("[origin= ")
.append(getOrigin())
.append(", u= ")
.append(u)
.append(", v= ")
.append(v)
.append(", w= ")
.append(getNormal())
.append(']');
return sb.toString();
}
/** Get an object containing the current plane transformed by the argument along with a
* 2D transform that can be applied to subspace points. The subspace transform transforms
* subspace points such that their 3D location in the transformed plane is the same as their
* 3D location in the original plane after the 3D transform is applied. For example, consider
* the code below:
*
* SubspaceTransform st = plane.subspaceTransform(transform);
*
* Vector2D subPt = Vector2D.of(1, 1);
*
* Vector3D a = transform.apply(plane.toSpace(subPt)); // transform in 3D space
* Vector3D b = st.getPlane().toSpace(st.getTransform().apply(subPt)); // transform in 2D space
*
* At the end of execution, the points {@code a} (which was transformed using the original
* 3D transform) and {@code b} (which was transformed in 2D using the subspace transform)
* are equivalent.
*
* @param transform the transform to apply to this instance
* @return an object containing the transformed plane along with a transform that can be applied
* to subspace points
* @see #transform(Transform)
*/
public SubspaceTransform subspaceTransform(final Transform transform) {
final Vector3D origin = getOrigin();
final Vector3D tOrigin = transform.apply(origin);
final Vector3D tPlusU = transform.apply(origin.add(u));
final Vector3D tPlusV = transform.apply(origin.add(v));
final EmbeddingPlane tPlane = Planes.fromPointAndPlaneVectors(
tOrigin,
tOrigin.vectorTo(tPlusU),
tOrigin.vectorTo(tPlusV),
getPrecision());
final Vector2D tSubspaceOrigin = tPlane.toSubspace(tOrigin);
final Vector2D tSubspaceU = tSubspaceOrigin.vectorTo(tPlane.toSubspace(tPlusU));
final Vector2D tSubspaceV = tSubspaceOrigin.vectorTo(tPlane.toSubspace(tPlusV));
final AffineTransformMatrix2D subspaceTransform =
AffineTransformMatrix2D.fromColumnVectors(tSubspaceU, tSubspaceV, tSubspaceOrigin);
return new SubspaceTransform(tPlane, subspaceTransform);
}
/** Class containing a transformed plane instance along with a subspace (2D) transform. The subspace
* transform produces the equivalent of the 3D transform in 2D.
*/
public static final class SubspaceTransform {
/** The transformed plane. */
private final EmbeddingPlane plane;
/** The subspace transform instance. */
private final AffineTransformMatrix2D transform;
/** Simple constructor.
* @param plane the transformed plane
* @param transform 2D transform that can be applied to subspace points
*/
public SubspaceTransform(final EmbeddingPlane plane, final AffineTransformMatrix2D transform) {
this.plane = plane;
this.transform = transform;
}
/** Get the transformed plane instance.
* @return the transformed plane instance
*/
public EmbeddingPlane getPlane() {
return plane;
}
/** Get the 2D transform that can be applied to subspace points. This transform can be used
* to perform the equivalent of the 3D transform in 2D space.
* @return the subspace transform instance
*/
public AffineTransformMatrix2D getTransform() {
return transform;
}
}
}