org.apache.commons.geometry.euclidean.threed.Plane Maven / Gradle / Ivy
Show all versions of commons-geometry-euclidean Show documentation
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.geometry.euclidean.threed;
import java.util.Objects;
import org.apache.commons.geometry.core.Transform;
import org.apache.commons.geometry.core.partitioning.AbstractHyperplane;
import org.apache.commons.geometry.core.partitioning.Hyperplane;
import org.apache.commons.geometry.euclidean.threed.line.Line3D;
import org.apache.commons.geometry.euclidean.threed.line.Lines3D;
import org.apache.commons.geometry.euclidean.threed.rotation.QuaternionRotation;
import org.apache.commons.geometry.euclidean.twod.ConvexArea;
import org.apache.commons.numbers.core.Precision;
/** Class representing a plane in 3 dimensional Euclidean space. Each plane is defined by a
* {@link #getNormal() normal} and an {@link #getOriginOffset() origin offset}. If \(\vec{n}\) is the plane normal,
* \(d\) is the origin offset, and \(p\) and \(q\) are any points in the plane, then the following are true:
*
* - \(\lVert \vec{n} \rVert\) = 1
* - \(\vec{n} \cdot (p - q) = 0\)
* - \(d = - (\vec{n} \cdot q)\)
*
* In other words, the normal is a unit vector such that the dot product of the normal and the difference of
* any two points in the plane is always equal to \(0\). Similarly, the {@code origin offset} is equal to the
* negation of the dot product of the normal and any point in the plane. The projection of the origin onto the
* plane (given by {@link #getOrigin()}), is computed as \(-d \vec{n}\).
*
* Instances of this class are guaranteed to be immutable.
* @see Planes
*/
public class Plane extends AbstractHyperplane {
/** Plane normal. */
private final Vector3D.Unit normal;
/** Offset of the origin with respect to the plane. */
private final double originOffset;
/** Construct a plane from its component parts.
* @param normal unit normal vector
* @param originOffset offset of the origin with respect to the plane
* @param precision precision context used to compare floating point values
*/
Plane(final Vector3D.Unit normal, final double originOffset,
final Precision.DoubleEquivalence precision) {
super(precision);
this.normal = normal;
this.originOffset = originOffset;
}
/** Get the orthogonal projection of the 3D-space origin in the plane.
* @return the origin point of the plane frame (point closest to the 3D-space
* origin)
*/
public Vector3D getOrigin() {
return normal.multiply(-originOffset);
}
/** Get the offset of the spatial origin ({@code 0, 0, 0}) with respect to the plane.
* @return the offset of the origin with respect to the plane.
*/
public double getOriginOffset() {
return originOffset;
}
/** Get the plane normal vector.
* @return plane normal vector
*/
public Vector3D.Unit getNormal() {
return normal;
}
/** Return an {@link EmbeddingPlane} instance suitable for embedding 2D geometric objects
* into this plane. Returned instances are guaranteed to be equal between invocations.
* @return a plane instance suitable for embedding 2D subspaces
*/
public EmbeddingPlane getEmbedding() {
final Vector3D.Unit u = normal.orthogonal();
final Vector3D.Unit v = normal.cross(u).normalize();
return new EmbeddingPlane(u, v, normal, originOffset, getPrecision());
}
/** {@inheritDoc} */
@Override
public double offset(final Vector3D point) {
return point.dot(normal) + originOffset;
}
/** Get the offset (oriented distance) of the given line with respect to the plane. The value
* closest to zero is returned, which will always be zero if the line is not parallel to the plane.
* @param line line to calculate the offset of
* @return the offset of the line with respect to the plane or 0.0 if the line
* is not parallel to the plane.
*/
public double offset(final Line3D line) {
if (!isParallel(line)) {
return 0.0;
}
return offset(line.getOrigin());
}
/** Get the offset (oriented distance) of the given plane with respect to this instance. The value
* closest to zero is returned, which will always be zero if the planes are not parallel.
* @param plane plane to calculate the offset of
* @return the offset of the plane with respect to this instance or 0.0 if the planes
* are not parallel.
*/
public double offset(final Plane plane) {
if (!isParallel(plane)) {
return 0.0;
}
return originOffset + (similarOrientation(plane) ? -plane.originOffset : plane.originOffset);
}
/** Check if the instance contains a point.
* @param p point to check
* @return true if p belongs to the plane
*/
@Override
public boolean contains(final Vector3D p) {
return getPrecision().eqZero(offset(p));
}
/** Check if the instance contains a line.
* @param line line to check
* @return true if line is contained in this plane
*/
public boolean contains(final Line3D line) {
return isParallel(line) && contains(line.getOrigin());
}
/** Check if the instance contains another plane. Planes are considered similar if they contain
* the same points. This does not mean they are equal since they can have opposite normals.
* @param plane plane to which the instance is compared
* @return true if the planes are similar
*/
public boolean contains(final Plane plane) {
final double angle = normal.angle(plane.normal);
final Precision.DoubleEquivalence precision = getPrecision();
return ((precision.eqZero(angle)) && precision.eq(originOffset, plane.originOffset)) ||
((precision.eq(angle, Math.PI)) && precision.eq(originOffset, -plane.originOffset));
}
/** {@inheritDoc} */
@Override
public Vector3D project(final Vector3D point) {
return getOrigin().add(point.reject(normal));
}
/** Project a 3D line onto the plane.
* @param line the line to project
* @return the projection of the given line onto the plane.
*/
public Line3D project(final Line3D line) {
final Vector3D direction = line.getDirection();
final Vector3D projection = normal.multiply(direction.dot(normal) * (1 / normal.normSq()));
final Vector3D projectedLineDirection = direction.subtract(projection);
final Vector3D p1 = project(line.getOrigin());
final Vector3D p2 = p1.add(projectedLineDirection);
return Lines3D.fromPoints(p1, p2, getPrecision());
}
/** {@inheritDoc} */
@Override
public PlaneConvexSubset span() {
return Planes.subsetFromConvexArea(getEmbedding(), ConvexArea.full());
}
/** Check if the line is parallel to the instance.
* @param line line to check.
* @return true if the line is parallel to the instance, false otherwise.
*/
public boolean isParallel(final Line3D line) {
final double dot = normal.dot(line.getDirection());
return getPrecision().eqZero(dot);
}
/** Check if the plane is parallel to the instance.
* @param plane plane to check.
* @return true if the plane is parallel to the instance, false otherwise.
*/
public boolean isParallel(final Plane plane) {
return getPrecision().eqZero(normal.cross(plane.normal).norm());
}
/** {@inheritDoc} */
@Override
public boolean similarOrientation(final Hyperplane other) {
return (((Plane) other).normal).dot(normal) > 0;
}
/** Get the intersection of a line with this plane.
* @param line line intersecting the instance
* @return intersection point between between the line and the instance (null if
* the line is parallel to the instance)
*/
public Vector3D intersection(final Line3D line) {
final Vector3D direction = line.getDirection();
final double dot = normal.dot(direction);
if (getPrecision().eqZero(dot)) {
return null;
}
final Vector3D point = line.pointAt(0);
final double k = -(originOffset + normal.dot(point)) / dot;
return Vector3D.Sum.of(point)
.addScaled(k, direction)
.get();
}
/** Get the line formed by the intersection of this instance with the given plane.
* The returned line lies in both planes and points in the direction of
* the cross product n1 x n2
, where n1
* is the normal of the current instance and n2
is the normal
* of the argument.
*
* Null is returned if the planes are parallel.
*
* @param other other plane
* @return line at the intersection of the instance and the other plane, or null
* if no such line exists
*/
public Line3D intersection(final Plane other) {
final Vector3D direction = normal.cross(other.normal);
if (getPrecision().eqZero(direction.norm())) {
return null;
}
final Vector3D point = intersection(this, other, Planes.fromNormal(direction, getPrecision()));
return Lines3D.fromPointAndDirection(point, direction, getPrecision());
}
/** Build a new reversed version of this plane, with opposite orientation.
* @return a new reversed plane
*/
@Override
public Plane reverse() {
return new Plane(normal.negate(), -originOffset, getPrecision());
}
/** {@inheritDoc}
*
* Instances are transformed by selecting 3 representative points from the
* plane, transforming them, and constructing a new plane from the transformed points.
* Since the normal is not transformed directly, but rather is constructed new from the
* transformed points, the relative orientations of points in the plane are preserved,
* even for transforms that do not
* {@link Transform#preservesOrientation() preserve orientation}. The example below shows
* a plane being transformed by a non-orientation-preserving transform. The normal of the
* transformed plane retains its counterclockwise relationship to the points in the plane,
* in contrast with the normal that is transformed directly by the transform.
*
*
* // construct a plane from 3 points; the normal will be selected such that the
* // points are ordered counterclockwise when looking down the plane normal.
* Vector3D p1 = Vector3D.of(0, 0, 0);
* Vector3D p2 = Vector3D.of(+1, 0, 0);
* Vector3D p3 = Vector3D.of(0, +1, 0);
*
* Plane plane = Planes.fromPoints(p1, p2, p3, precision); // normal is (0, 0, +1)
*
* // create a transform that negates all x-values; this transform does not
* // preserve orientation, i.e. it will convert a right-handed system into a left-handed
* // system and vice versa
* AffineTransformMatrix3D transform = AffineTransformMatrix3D.createScale(-1, 1, 1);
*
* // transform the plane
* Plane transformedPlane = plane.transform(transform);
*
* // the plane normal is oriented such that transformed points are still ordered
* // counterclockwise when looking down the plane normal; since the point (1, 0, 0) has
* // now become (-1, 0, 0), the normal has flipped to (0, 0, -1)
* transformedPlane.getNormal();
*
* // directly transform the original plane normal; the normal is unchanged by the transform
* // since the target space of the transform is left-handed
* AffineTransformMatrix3D normalTransform = transform.normalTransform();
* Vector3D directlyTransformedNormal = normalTransform.apply(plane.getNormal()); // (0, 0, +1)
*
*/
@Override
public Plane transform(final Transform transform) {
// create 3 representation points lying on the plane, transform them,
// and use the transformed points to create a new plane
final Vector3D u = normal.orthogonal();
final Vector3D v = normal.cross(u);
final Vector3D p1 = getOrigin();
final Vector3D p2 = p1.add(u);
final Vector3D p3 = p1.add(v);
final Vector3D t1 = transform.apply(p1);
final Vector3D t2 = transform.apply(p2);
final Vector3D t3 = transform.apply(p3);
return Planes.fromPoints(t1, t2, t3, getPrecision());
}
/** Translate the plane by the specified amount.
* @param translation translation to apply
* @return a new plane
*/
public Plane translate(final Vector3D translation) {
final Vector3D tOrigin = getOrigin().add(translation);
return Planes.fromPointAndNormal(tOrigin, normal, getPrecision());
}
/** Rotate the plane around the specified point.
* @param center rotation center
* @param rotation 3-dimensional rotation
* @return a new plane
*/
public Plane rotate(final Vector3D center, final QuaternionRotation rotation) {
final Vector3D delta = getOrigin().subtract(center);
final Vector3D tOrigin = center.add(rotation.apply(delta));
// we can directly apply the rotation to the normal since it will transform
// it properly (there is no translation or scaling involved)
final Vector3D.Unit tNormal = rotation.apply(normal).normalize();
return Planes.fromPointAndNormal(tOrigin, tNormal, getPrecision());
}
/** Return true if this instance should be considered equivalent to the argument, using the
* given precision context for comparison. Instances are considered equivalent if they contain
* the same points, which is determined by comparing the plane {@code origins} and {@code normals}.
* @param other the point to compare with
* @param precision precision context to use for the comparison
* @return true if this instance should be considered equivalent to the argument
* @see Vector3D#eq(Vector3D, Precision.DoubleEquivalence)
*/
public boolean eq(final Plane other, final Precision.DoubleEquivalence precision) {
return getOrigin().eq(other.getOrigin(), precision) &&
normal.eq(other.normal, precision);
}
/** {@inheritDoc} */
@Override
public int hashCode() {
return Objects.hash(normal, originOffset, getPrecision());
}
/** {@inheritDoc} */
@Override
public boolean equals(final Object obj) {
if (this == obj) {
return true;
} else if (obj == null || obj.getClass() != this.getClass()) {
return false;
}
final Plane other = (Plane) obj;
return Objects.equals(this.normal, other.normal) &&
Double.compare(this.originOffset, other.originOffset) == 0 &&
Objects.equals(this.getPrecision(), other.getPrecision());
}
/** {@inheritDoc} */
@Override
public String toString() {
final StringBuilder sb = new StringBuilder();
sb.append(getClass().getSimpleName())
.append("[origin= ")
.append(getOrigin())
.append(", normal= ")
.append(normal)
.append(']');
return sb.toString();
}
/** Get the intersection point of three planes. Returns null if no unique intersection point
* exists (ie, there are no intersection points or an infinite number).
* @param plane1 first plane1
* @param plane2 second plane2
* @param plane3 third plane2
* @return intersection point of the three planes or null if no unique intersection point exists
*/
public static Vector3D intersection(final Plane plane1, final Plane plane2, final Plane plane3) {
// coefficients of the three planes linear equations
final double a1 = plane1.normal.getX();
final double b1 = plane1.normal.getY();
final double c1 = plane1.normal.getZ();
final double d1 = plane1.originOffset;
final double a2 = plane2.normal.getX();
final double b2 = plane2.normal.getY();
final double c2 = plane2.normal.getZ();
final double d2 = plane2.originOffset;
final double a3 = plane3.normal.getX();
final double b3 = plane3.normal.getY();
final double c3 = plane3.normal.getZ();
final double d3 = plane3.originOffset;
// direct Cramer resolution of the linear system
// (this is still feasible for a 3x3 system)
final double a23 = (b2 * c3) - (b3 * c2);
final double b23 = (c2 * a3) - (c3 * a2);
final double c23 = (a2 * b3) - (a3 * b2);
final double determinant = (a1 * a23) + (b1 * b23) + (c1 * c23);
// use the precision context of the first plane to determine equality
if (plane1.getPrecision().eqZero(determinant)) {
return null;
}
final double r = 1.0 / determinant;
return Vector3D.of((-a23 * d1 - (c1 * b3 - c3 * b1) * d2 - (c2 * b1 - c1 * b2) * d3) * r,
(-b23 * d1 - (c3 * a1 - c1 * a3) * d2 - (c1 * a2 - c2 * a1) * d3) * r,
(-c23 * d1 - (b1 * a3 - b3 * a1) * d2 - (b2 * a1 - b1 * a2) * d3) * r);
}
}