All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.geometry.spherical.twod.Point2S Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.geometry.spherical.twod;

import java.util.Comparator;

import org.apache.commons.geometry.core.Point;
import org.apache.commons.geometry.core.internal.SimpleTupleFormat;
import org.apache.commons.geometry.euclidean.threed.SphericalCoordinates;
import org.apache.commons.geometry.euclidean.threed.Vector3D;
import org.apache.commons.geometry.euclidean.threed.rotation.QuaternionRotation;
import org.apache.commons.numbers.core.Precision;

/** This class represents a point on the 2-sphere.
 * 

Instances of this class are guaranteed to be immutable.

*/ public final class Point2S implements Point { /** +I (coordinates: ( azimuth = 0, polar = pi/2 )). */ public static final Point2S PLUS_I = new Point2S(0, 0.5 * Math.PI, Vector3D.Unit.PLUS_X); /** +J (coordinates: ( azimuth = pi/2, polar = pi/2 ))). */ public static final Point2S PLUS_J = new Point2S(0.5 * Math.PI, 0.5 * Math.PI, Vector3D.Unit.PLUS_Y); /** +K (coordinates: ( azimuth = any angle, polar = 0 )). */ public static final Point2S PLUS_K = new Point2S(0, 0, Vector3D.Unit.PLUS_Z); /** -I (coordinates: ( azimuth = pi, polar = pi/2 )). */ public static final Point2S MINUS_I = new Point2S(Math.PI, 0.5 * Math.PI, Vector3D.Unit.MINUS_X); /** -J (coordinates: ( azimuth = 3pi/2, polar = pi/2 )). */ public static final Point2S MINUS_J = new Point2S(1.5 * Math.PI, 0.5 * Math.PI, Vector3D.Unit.MINUS_Y); /** -K (coordinates: ( azimuth = any angle, polar = pi )). */ public static final Point2S MINUS_K = new Point2S(0, Math.PI, Vector3D.Unit.MINUS_Z); /** A point with all coordinates set to NaN. */ public static final Point2S NaN = new Point2S(Double.NaN, Double.NaN, null); /** Comparator that sorts points in component-wise ascending order, first sorting * by polar value and then by azimuth value. Points are only considered equal if * their components match exactly. Null arguments are evaluated as being greater * than non-null arguments. */ public static final Comparator POLAR_AZIMUTH_ASCENDING_ORDER = (a, b) -> { int cmp = 0; if (a != null && b != null) { cmp = Double.compare(a.getPolar(), b.getPolar()); if (cmp == 0) { cmp = Double.compare(a.getAzimuth(), b.getAzimuth()); } } else if (a != null) { cmp = -1; } else if (b != null) { cmp = 1; } return cmp; }; /** Azimuthal angle in the x-y plane. */ private final double azimuth; /** Polar angle. */ private final double polar; /** Corresponding 3D normalized vector. */ private final Vector3D.Unit vector; /** Build a point from its internal components. * @param azimuth azimuthal angle in the x-y plane * @param polar polar angle * @param vector corresponding vector; if null, the vector is computed */ private Point2S(final double azimuth, final double polar, final Vector3D.Unit vector) { this.azimuth = SphericalCoordinates.normalizeAzimuth(azimuth); this.polar = SphericalCoordinates.normalizePolar(polar); this.vector = (vector != null) ? vector : computeVector(azimuth, polar); } /** Get the azimuth angle in the x-y plane in the range {@code [0, 2pi)}. * @return azimuth angle in the x-y plane in the range {@code [0, 2pi)}. * @see Point2S#of(double, double) */ public double getAzimuth() { return azimuth; } /** Get the polar angle in the range {@code [0, pi)}. * @return polar angle in the range {@code [0, pi)}. * @see Point2S#of(double, double) */ public double getPolar() { return polar; } /** Get the corresponding normalized vector in 3D Euclidean space. * This value will be null if the spherical coordinates of the point * are infinite or NaN. * @return normalized vector */ public Vector3D.Unit getVector() { return vector; } /** {@inheritDoc} */ @Override public int getDimension() { return 2; } /** {@inheritDoc} */ @Override public boolean isNaN() { return Double.isNaN(azimuth) || Double.isNaN(polar); } /** {@inheritDoc} */ @Override public boolean isInfinite() { return !isNaN() && (Double.isInfinite(azimuth) || Double.isInfinite(polar)); } /** {@inheritDoc} */ @Override public boolean isFinite() { return Double.isFinite(azimuth) && Double.isFinite(polar); } /** Get the point exactly opposite this point on the sphere. The returned * point is {@code pi} distance away from the current instance. * @return the point exactly opposite this point on the sphere */ public Point2S antipodal() { return from(vector.negate()); } /** {@inheritDoc} */ @Override public double distance(final Point2S point) { return distance(this, point); } /** Spherically interpolate a point along the shortest arc between this point and * the given point. The parameter {@code t} controls the interpolation and is expected * to be in the range {@code [0, 1]}, with {@code 0} returning a point equivalent to the * current instance {@code 1} returning a point equivalent to the given instance. If the * points are antipodal, then an arbitrary arc is chosen from the infinite number available. * @param other other point to interpolate with * @param t interpolation parameter * @return spherically interpolated point * @see QuaternionRotation#slerp(QuaternionRotation) * @see QuaternionRotation#createVectorRotation(Vector3D, Vector3D) */ public Point2S slerp(final Point2S other, final double t) { final QuaternionRotation start = QuaternionRotation.identity(); final QuaternionRotation end = QuaternionRotation.createVectorRotation(getVector(), other.getVector()); final QuaternionRotation quat = start.slerp(end).apply(t); return Point2S.from(quat.apply(getVector())); } /** Return true if this point should be considered equivalent to the argument using the * given precision context. This will be true if the distance between the points is * equivalent to zero as evaluated by the precision context. * @param point point to compare with * @param precision precision context used to perform floating point comparisons * @return true if this point should be considered equivalent to the argument using the * given precision context */ public boolean eq(final Point2S point, final Precision.DoubleEquivalence precision) { return precision.eqZero(distance(point)); } /** Get a hashCode for the point. * . *

All NaN values have the same hash code.

* * @return a hash code value for this object */ @Override public int hashCode() { if (isNaN()) { return 542; } return 134 * (37 * Double.hashCode(azimuth) + Double.hashCode(polar)); } /** Test for the equality of two points. * *

If all spherical coordinates of two points are exactly the same, and none are * Double.NaN, the two points are considered to be equal. Note * that the comparison is made using the azimuth and polar coordinates only; the * corresponding 3D vectors are not compared. This is significant at the poles, * where an infinite number of points share the same underlying 3D vector but may * have different spherical coordinates. For example, the points {@code (0, 0)} * and {@code (1, 0)} (both located at a pole but with different azimuths) will * not be considered equal by this method, even though they share the * exact same underlying 3D vector.

* *

* NaN coordinates are considered to affect the point globally * and be equals to each other - i.e, if either (or all) coordinates of the * point are equal to Double.NaN, the point is equal to * {@link #NaN}. *

* * @param other Object to test for equality to this * @return true if two points on the 2-sphere objects are exactly equal, false if * object is null, not an instance of Point2S, or * not equal to this Point2S instance */ @Override public boolean equals(final Object other) { if (this == other) { return true; } if (!(other instanceof Point2S)) { return false; } final Point2S rhs = (Point2S) other; if (rhs.isNaN()) { return this.isNaN(); } return Double.compare(azimuth, rhs.azimuth) == 0 && Double.compare(polar, rhs.polar) == 0; } /** {@inheritDoc} */ @Override public String toString() { return SimpleTupleFormat.getDefault().format(getAzimuth(), getPolar()); } /** Build a vector from its spherical coordinates. * @param azimuth azimuthal angle in the x-y plane * @param polar polar angle * @return point instance with the given coordinates * @see #getAzimuth() * @see #getPolar() */ public static Point2S of(final double azimuth, final double polar) { return new Point2S(azimuth, polar, null); } /** Build a point from its underlying 3D vector. * @param vector 3D vector * @return point instance with the coordinates determined by the given 3D vector * @exception IllegalStateException if vector norm is zero */ public static Point2S from(final Vector3D vector) { final SphericalCoordinates coords = SphericalCoordinates.fromCartesian(vector); return new Point2S(coords.getAzimuth(), coords.getPolar(), vector.normalize()); } /** Parses the given string and returns a new point instance. The expected string * format is the same as that returned by {@link #toString()}. * @param str the string to parse * @return point instance represented by the string * @throws IllegalArgumentException if the given string has an invalid format */ public static Point2S parse(final String str) { return SimpleTupleFormat.getDefault().parse(str, Point2S::of); } /** Compute the distance (angular separation) between two points. * @param p1 first vector * @param p2 second vector * @return the angular separation between p1 and p2 */ public static double distance(final Point2S p1, final Point2S p2) { return p1.vector.angle(p2.vector); } /** Compute the 3D Euclidean vector associated with the given spherical coordinates. * Null is returned if the coordinates are infinite or NaN. * @param azimuth azimuth value * @param polar polar value * @return the 3D Euclidean vector associated with the given spherical coordinates * or null if either of the arguments are infinite or NaN. */ private static Vector3D.Unit computeVector(final double azimuth, final double polar) { if (Double.isFinite(azimuth) && Double.isFinite(polar)) { return SphericalCoordinates.toCartesian(1, azimuth, polar).normalize(); } return null; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy