All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.imaging.common.RationalNumber Maven / Gradle / Ivy

There is a newer version: 1.0.0-alpha5
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.imaging.common;

import java.text.NumberFormat;

/**
 * Rational number, as used by the TIFF image format.
 * 

* The TIFF format specifies two data types for rational numbers based on a pair of 32-bit integers. Rational is based on unsigned 32-bit integers and SRational * is based on signed 32-bit integers. This treatment is problematic in Java because Java does not support unsigned types. To address this challenge, this class * stores the numerator and divisor in long (64-bit) integers, applying masks as necessary for the unsigned type. */ public class RationalNumber extends Number { private static final class Option { public static Option factory(final RationalNumber rationalNumber, final double value) { return new Option(rationalNumber, Math.abs(rationalNumber.doubleValue() - value)); } public final RationalNumber rationalNumber; public final double error; private Option(final RationalNumber rationalNumber, final double error) { this.rationalNumber = rationalNumber; this.error = error; } @Override public String toString() { return rationalNumber.toString(); } } private static final long serialVersionUID = -1; // int-precision tolerance private static final double TOLERANCE = 1E-8; public static final int SHALLOW_SIZE = 32; static RationalNumber factoryMethod(long n, long d) { // safer than constructor - handles values outside min/max range. // also does some simple finding of common denominators. if (n > Integer.MAX_VALUE || n < Integer.MIN_VALUE || d > Integer.MAX_VALUE || d < Integer.MIN_VALUE) { while ((n > Integer.MAX_VALUE || n < Integer.MIN_VALUE || d > Integer.MAX_VALUE || d < Integer.MIN_VALUE) && Math.abs(n) > 1 && Math.abs(d) > 1) { // brutal, imprecise truncation =( // use the sign-preserving right shift operator. n >>= 1; d >>= 1; } if (d == 0) { throw new NumberFormatException("Invalid value, numerator: " + n + ", divisor: " + d); } } final long gcd = gcd(n, d); d /= gcd; n /= gcd; return new RationalNumber((int) n, (int) d); } /** * Gets the greatest common divisor */ private static long gcd(final long a, final long b) { if (b == 0) { return a; } return gcd(b, a % b); } /** * Calculate rational number using successive approximations. * * @param value rational number double value * @return the RationalNumber representation of the double value */ public static RationalNumber valueOf(double value) { if (value >= Integer.MAX_VALUE) { return new RationalNumber(Integer.MAX_VALUE, 1); } if (value <= -Integer.MAX_VALUE) { return new RationalNumber(-Integer.MAX_VALUE, 1); } boolean negative = false; if (value < 0) { negative = true; value = Math.abs(value); } RationalNumber l; RationalNumber h; if (value == 0) { return new RationalNumber(0, 1); } if (value >= 1) { final int approx = (int) value; if (approx < value) { l = new RationalNumber(approx, 1); h = new RationalNumber(approx + 1, 1); } else { l = new RationalNumber(approx - 1, 1); h = new RationalNumber(approx, 1); } } else { final int approx = (int) (1.0 / value); if (1.0 / approx < value) { l = new RationalNumber(1, approx); h = new RationalNumber(1, approx - 1); } else { l = new RationalNumber(1, approx + 1); h = new RationalNumber(1, approx); } } Option low = Option.factory(l, value); Option high = Option.factory(h, value); Option bestOption = low.error < high.error ? low : high; final int maxIterations = 100; // value is quite high, actually. // shouldn't matter. for (int count = 0; bestOption.error > TOLERANCE && count < maxIterations; count++) { final RationalNumber mediant = RationalNumber.factoryMethod(low.rationalNumber.numerator + high.rationalNumber.numerator, low.rationalNumber.divisor + high.rationalNumber.divisor); final Option mediantOption = Option.factory(mediant, value); if (value < mediant.doubleValue()) { if (high.error <= mediantOption.error) { break; } high = mediantOption; } else { if (low.error <= mediantOption.error) { break; } low = mediantOption; } if (mediantOption.error < bestOption.error) { bestOption = mediantOption; } } return negative ? bestOption.rationalNumber.negate() : bestOption.rationalNumber; } // The TIFF and EXIF specifications call for the use // of 32 bit unsigned integers. Since Java does not have an // unsigned type, this class widens the type to long in order // to avoid unintended negative numbers. public final long numerator; public final long divisor; public final boolean unsignedType; /** * Constructs an instance based on signed integers * * @param numerator a 32-bit signed integer * @param divisor a non-zero 32-bit signed integer */ public RationalNumber(final int numerator, final int divisor) { this.numerator = numerator; this.divisor = divisor; this.unsignedType = false; } /** * Constructs an instance supports either signed or unsigned integers. * * @param numerator a numerator in the indicated form (signed or unsigned) * @param divisor a non-zero divisor in the indicated form (signed or unsigned) * @param unsignedType indicates whether the input values are to be treated as unsigned. */ public RationalNumber(final int numerator, final int divisor, final boolean unsignedType) { this.unsignedType = unsignedType; if (unsignedType) { this.numerator = numerator & 0xffffffffL; this.divisor = divisor & 0xffffffffL; } else { this.numerator = numerator; this.divisor = divisor; } } /** * A private constructor for methods such as negate() that create instances of this class using the content of the current instance. * * @param numerator a valid numerator * @param divisor a valid denominator * @param unsignedType indicates how numerator and divisor values are to be interpreted. */ private RationalNumber(final long numerator, final long divisor, final boolean unsignedType) { this.numerator = numerator; this.divisor = divisor; this.unsignedType = unsignedType; } @Override public double doubleValue() { return (double) numerator / (double) divisor; } @Override public float floatValue() { // The computation uses double value in order to preserve // as much of the precision of the source numerator and denominator // as possible. Note that the expression // return (float)numerator/(float) denominator // could lose precision since a Java float only carries 24 bits // of precision while an integer carries 32. return (float) doubleValue(); } @Override public int intValue() { return (int) (numerator / divisor); } @Override public long longValue() { return numerator / divisor; } /** * Negates the value of the RationalNumber. If the numerator of this instance has its high-order bit set, then its value is too large to be treated as a * Java 32-bit signed integer. In such a case, the only way that a RationalNumber instance can be negated is to divide both terms by a common divisor, if a * non-zero common divisor exists. However, if no such divisor exists, there is no numerically correct way to perform the negation. When a negation cannot * be performed correctly, this method throws an unchecked exception. * * @return a valid instance with a negated value. */ public RationalNumber negate() { long n = numerator; long d = divisor; if (unsignedType) { // An instance of an unsigned type can be negated if and only if // its high-order bit (the sign bit) is clear. If the bit is set, // the value will be too large to convert to a signed type. // In such a case it is necessary to adjust the numerator and denominator // by their greatest common divisor (gcd), if one exists. // If no non-zero common divisor exists, an exception is thrown. if (n >> 31 == 1) { // the unsigned value is so large that the high-order bit is set // it cannot be converted to a negative number. Check to see // whether there is an option to reduce its magnitude. final long g = gcd(numerator, divisor); if (g != 0) { n /= g; d /= g; } if (n >> 31 == 1) { throw new NumberFormatException("Unsigned numerator is too large to negate " + numerator); } } } return new RationalNumber(-n, d, false); } public String toDisplayString() { if (numerator % divisor == 0) { return Long.toString(numerator / divisor); } final NumberFormat nf = NumberFormat.getInstance(); nf.setMaximumFractionDigits(3); return nf.format((double) numerator / (double) divisor); } @Override public String toString() { if (divisor == 0) { return "Invalid rational (" + numerator + "/" + divisor + ")"; } final NumberFormat nf = NumberFormat.getInstance(); if (numerator % divisor == 0) { return nf.format(numerator / divisor); } return numerator + "/" + divisor + " (" + nf.format((double) numerator / divisor) + ")"; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy