All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.lang3.math.Fraction Maven / Gradle / Ivy

Go to download

Apache Commons Lang, a package of Java utility classes for the classes that are in java.lang's hierarchy, or are considered to be so standard as to justify existence in java.lang. The code is tested using the latest revision of the JDK for supported LTS releases: 8, 11, 17 and 21 currently. See https://github.com/apache/commons-lang/blob/master/.github/workflows/maven.yml Please ensure your build environment is up-to-date and kindly report any build issues.

There is a newer version: 3.17.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 * 
 *      http://www.apache.org/licenses/LICENSE-2.0
 * 
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.lang3.math;

import java.math.BigInteger;

/**
 * 

Fraction is a Number implementation that * stores fractions accurately.

* *

This class is immutable, and interoperable with most methods that accept * a Number.

* *

Note that this class is intended for common use cases, it is int * based and thus suffers from various overflow issues. For a BigInteger based * equivalent, please see the Commons Math BigFraction class.

* * @since 2.0 * @version $Id: Fraction.java 1199894 2011-11-09 17:53:59Z ggregory $ */ public final class Fraction extends Number implements Comparable { /** * Required for serialization support. Lang version 2.0. * * @see java.io.Serializable */ private static final long serialVersionUID = 65382027393090L; /** * Fraction representation of 0. */ public static final Fraction ZERO = new Fraction(0, 1); /** * Fraction representation of 1. */ public static final Fraction ONE = new Fraction(1, 1); /** * Fraction representation of 1/2. */ public static final Fraction ONE_HALF = new Fraction(1, 2); /** * Fraction representation of 1/3. */ public static final Fraction ONE_THIRD = new Fraction(1, 3); /** * Fraction representation of 2/3. */ public static final Fraction TWO_THIRDS = new Fraction(2, 3); /** * Fraction representation of 1/4. */ public static final Fraction ONE_QUARTER = new Fraction(1, 4); /** * Fraction representation of 2/4. */ public static final Fraction TWO_QUARTERS = new Fraction(2, 4); /** * Fraction representation of 3/4. */ public static final Fraction THREE_QUARTERS = new Fraction(3, 4); /** * Fraction representation of 1/5. */ public static final Fraction ONE_FIFTH = new Fraction(1, 5); /** * Fraction representation of 2/5. */ public static final Fraction TWO_FIFTHS = new Fraction(2, 5); /** * Fraction representation of 3/5. */ public static final Fraction THREE_FIFTHS = new Fraction(3, 5); /** * Fraction representation of 4/5. */ public static final Fraction FOUR_FIFTHS = new Fraction(4, 5); /** * The numerator number part of the fraction (the three in three sevenths). */ private final int numerator; /** * The denominator number part of the fraction (the seven in three sevenths). */ private final int denominator; /** * Cached output hashCode (class is immutable). */ private transient int hashCode = 0; /** * Cached output toString (class is immutable). */ private transient String toString = null; /** * Cached output toProperString (class is immutable). */ private transient String toProperString = null; /** *

Constructs a Fraction instance with the 2 parts * of a fraction Y/Z.

* * @param numerator the numerator, for example the three in 'three sevenths' * @param denominator the denominator, for example the seven in 'three sevenths' */ private Fraction(int numerator, int denominator) { super(); this.numerator = numerator; this.denominator = denominator; } /** *

Creates a Fraction instance with the 2 parts * of a fraction Y/Z.

* *

Any negative signs are resolved to be on the numerator.

* * @param numerator the numerator, for example the three in 'three sevenths' * @param denominator the denominator, for example the seven in 'three sevenths' * @return a new fraction instance * @throws ArithmeticException if the denominator is zero * or the denominator is {@code negative} and the numerator is {@code Integer#MIN_VALUE} */ public static Fraction getFraction(int numerator, int denominator) { if (denominator == 0) { throw new ArithmeticException("The denominator must not be zero"); } if (denominator < 0) { if (numerator==Integer.MIN_VALUE || denominator==Integer.MIN_VALUE) { throw new ArithmeticException("overflow: can't negate"); } numerator = -numerator; denominator = -denominator; } return new Fraction(numerator, denominator); } /** *

Creates a Fraction instance with the 3 parts * of a fraction X Y/Z.

* *

The negative sign must be passed in on the whole number part.

* * @param whole the whole number, for example the one in 'one and three sevenths' * @param numerator the numerator, for example the three in 'one and three sevenths' * @param denominator the denominator, for example the seven in 'one and three sevenths' * @return a new fraction instance * @throws ArithmeticException if the denominator is zero * @throws ArithmeticException if the denominator is negative * @throws ArithmeticException if the numerator is negative * @throws ArithmeticException if the resulting numerator exceeds * Integer.MAX_VALUE */ public static Fraction getFraction(int whole, int numerator, int denominator) { if (denominator == 0) { throw new ArithmeticException("The denominator must not be zero"); } if (denominator < 0) { throw new ArithmeticException("The denominator must not be negative"); } if (numerator < 0) { throw new ArithmeticException("The numerator must not be negative"); } long numeratorValue; if (whole < 0) { numeratorValue = whole * (long)denominator - numerator; } else { numeratorValue = whole * (long)denominator + numerator; } if (numeratorValue < Integer.MIN_VALUE || numeratorValue > Integer.MAX_VALUE) { throw new ArithmeticException("Numerator too large to represent as an Integer."); } return new Fraction((int) numeratorValue, denominator); } /** *

Creates a reduced Fraction instance with the 2 parts * of a fraction Y/Z.

* *

For example, if the input parameters represent 2/4, then the created * fraction will be 1/2.

* *

Any negative signs are resolved to be on the numerator.

* * @param numerator the numerator, for example the three in 'three sevenths' * @param denominator the denominator, for example the seven in 'three sevenths' * @return a new fraction instance, with the numerator and denominator reduced * @throws ArithmeticException if the denominator is zero */ public static Fraction getReducedFraction(int numerator, int denominator) { if (denominator == 0) { throw new ArithmeticException("The denominator must not be zero"); } if (numerator==0) { return ZERO; // normalize zero. } // allow 2^k/-2^31 as a valid fraction (where k>0) if (denominator==Integer.MIN_VALUE && (numerator&1)==0) { numerator/=2; denominator/=2; } if (denominator < 0) { if (numerator==Integer.MIN_VALUE || denominator==Integer.MIN_VALUE) { throw new ArithmeticException("overflow: can't negate"); } numerator = -numerator; denominator = -denominator; } // simplify fraction. int gcd = greatestCommonDivisor(numerator, denominator); numerator /= gcd; denominator /= gcd; return new Fraction(numerator, denominator); } /** *

Creates a Fraction instance from a double value.

* *

This method uses the * continued fraction algorithm, computing a maximum of * 25 convergents and bounding the denominator by 10,000.

* * @param value the double value to convert * @return a new fraction instance that is close to the value * @throws ArithmeticException if |value| > Integer.MAX_VALUE * or value = NaN * @throws ArithmeticException if the calculated denominator is zero * @throws ArithmeticException if the the algorithm does not converge */ public static Fraction getFraction(double value) { int sign = value < 0 ? -1 : 1; value = Math.abs(value); if (value > Integer.MAX_VALUE || Double.isNaN(value)) { throw new ArithmeticException ("The value must not be greater than Integer.MAX_VALUE or NaN"); } int wholeNumber = (int) value; value -= wholeNumber; int numer0 = 0; // the pre-previous int denom0 = 1; // the pre-previous int numer1 = 1; // the previous int denom1 = 0; // the previous int numer2 = 0; // the current, setup in calculation int denom2 = 0; // the current, setup in calculation int a1 = (int) value; int a2 = 0; double x1 = 1; double x2 = 0; double y1 = value - a1; double y2 = 0; double delta1, delta2 = Double.MAX_VALUE; double fraction; int i = 1; // System.out.println("---"); do { delta1 = delta2; a2 = (int) (x1 / y1); x2 = y1; y2 = x1 - a2 * y1; numer2 = a1 * numer1 + numer0; denom2 = a1 * denom1 + denom0; fraction = (double) numer2 / (double) denom2; delta2 = Math.abs(value - fraction); // System.out.println(numer2 + " " + denom2 + " " + fraction + " " + delta2 + " " + y1); a1 = a2; x1 = x2; y1 = y2; numer0 = numer1; denom0 = denom1; numer1 = numer2; denom1 = denom2; i++; // System.out.println(">>" + delta1 +" "+ delta2+" "+(delta1 > delta2)+" "+i+" "+denom2); } while (delta1 > delta2 && denom2 <= 10000 && denom2 > 0 && i < 25); if (i == 25) { throw new ArithmeticException("Unable to convert double to fraction"); } return getReducedFraction((numer0 + wholeNumber * denom0) * sign, denom0); } /** *

Creates a Fraction from a String.

* *

The formats accepted are:

* *
    *
  1. double String containing a dot
  2. *
  3. 'X Y/Z'
  4. *
  5. 'Y/Z'
  6. *
  7. 'X' (a simple whole number)
  8. *
* and a .

* * @param str the string to parse, must not be null * @return the new Fraction instance * @throws IllegalArgumentException if the string is null * @throws NumberFormatException if the number format is invalid */ public static Fraction getFraction(String str) { if (str == null) { throw new IllegalArgumentException("The string must not be null"); } // parse double format int pos = str.indexOf('.'); if (pos >= 0) { return getFraction(Double.parseDouble(str)); } // parse X Y/Z format pos = str.indexOf(' '); if (pos > 0) { int whole = Integer.parseInt(str.substring(0, pos)); str = str.substring(pos + 1); pos = str.indexOf('/'); if (pos < 0) { throw new NumberFormatException("The fraction could not be parsed as the format X Y/Z"); } else { int numer = Integer.parseInt(str.substring(0, pos)); int denom = Integer.parseInt(str.substring(pos + 1)); return getFraction(whole, numer, denom); } } // parse Y/Z format pos = str.indexOf('/'); if (pos < 0) { // simple whole number return getFraction(Integer.parseInt(str), 1); } else { int numer = Integer.parseInt(str.substring(0, pos)); int denom = Integer.parseInt(str.substring(pos + 1)); return getFraction(numer, denom); } } // Accessors //------------------------------------------------------------------- /** *

Gets the numerator part of the fraction.

* *

This method may return a value greater than the denominator, an * improper fraction, such as the seven in 7/4.

* * @return the numerator fraction part */ public int getNumerator() { return numerator; } /** *

Gets the denominator part of the fraction.

* * @return the denominator fraction part */ public int getDenominator() { return denominator; } /** *

Gets the proper numerator, always positive.

* *

An improper fraction 7/4 can be resolved into a proper one, 1 3/4. * This method returns the 3 from the proper fraction.

* *

If the fraction is negative such as -7/4, it can be resolved into * -1 3/4, so this method returns the positive proper numerator, 3.

* * @return the numerator fraction part of a proper fraction, always positive */ public int getProperNumerator() { return Math.abs(numerator % denominator); } /** *

Gets the proper whole part of the fraction.

* *

An improper fraction 7/4 can be resolved into a proper one, 1 3/4. * This method returns the 1 from the proper fraction.

* *

If the fraction is negative such as -7/4, it can be resolved into * -1 3/4, so this method returns the positive whole part -1.

* * @return the whole fraction part of a proper fraction, that includes the sign */ public int getProperWhole() { return numerator / denominator; } // Number methods //------------------------------------------------------------------- /** *

Gets the fraction as an int. This returns the whole number * part of the fraction.

* * @return the whole number fraction part */ @Override public int intValue() { return numerator / denominator; } /** *

Gets the fraction as a long. This returns the whole number * part of the fraction.

* * @return the whole number fraction part */ @Override public long longValue() { return (long) numerator / denominator; } /** *

Gets the fraction as a float. This calculates the fraction * as the numerator divided by denominator.

* * @return the fraction as a float */ @Override public float floatValue() { return (float) numerator / (float) denominator; } /** *

Gets the fraction as a double. This calculates the fraction * as the numerator divided by denominator.

* * @return the fraction as a double */ @Override public double doubleValue() { return (double) numerator / (double) denominator; } // Calculations //------------------------------------------------------------------- /** *

Reduce the fraction to the smallest values for the numerator and * denominator, returning the result.

* *

For example, if this fraction represents 2/4, then the result * will be 1/2.

* * @return a new reduced fraction instance, or this if no simplification possible */ public Fraction reduce() { if (numerator == 0) { return equals(ZERO) ? this : ZERO; } int gcd = greatestCommonDivisor(Math.abs(numerator), denominator); if (gcd == 1) { return this; } return Fraction.getFraction(numerator / gcd, denominator / gcd); } /** *

Gets a fraction that is the inverse (1/fraction) of this one.

* *

The returned fraction is not reduced.

* * @return a new fraction instance with the numerator and denominator * inverted. * @throws ArithmeticException if the fraction represents zero. */ public Fraction invert() { if (numerator == 0) { throw new ArithmeticException("Unable to invert zero."); } if (numerator==Integer.MIN_VALUE) { throw new ArithmeticException("overflow: can't negate numerator"); } if (numerator<0) { return new Fraction(-denominator, -numerator); } else { return new Fraction(denominator, numerator); } } /** *

Gets a fraction that is the negative (-fraction) of this one.

* *

The returned fraction is not reduced.

* * @return a new fraction instance with the opposite signed numerator */ public Fraction negate() { // the positive range is one smaller than the negative range of an int. if (numerator==Integer.MIN_VALUE) { throw new ArithmeticException("overflow: too large to negate"); } return new Fraction(-numerator, denominator); } /** *

Gets a fraction that is the positive equivalent of this one.

*

More precisely: (fraction >= 0 ? this : -fraction)

* *

The returned fraction is not reduced.

* * @return this if it is positive, or a new positive fraction * instance with the opposite signed numerator */ public Fraction abs() { if (numerator >= 0) { return this; } return negate(); } /** *

Gets a fraction that is raised to the passed in power.

* *

The returned fraction is in reduced form.

* * @param power the power to raise the fraction to * @return this if the power is one, ONE if the power * is zero (even if the fraction equals ZERO) or a new fraction instance * raised to the appropriate power * @throws ArithmeticException if the resulting numerator or denominator exceeds * Integer.MAX_VALUE */ public Fraction pow(int power) { if (power == 1) { return this; } else if (power == 0) { return ONE; } else if (power < 0) { if (power==Integer.MIN_VALUE) { // MIN_VALUE can't be negated. return this.invert().pow(2).pow(-(power/2)); } return this.invert().pow(-power); } else { Fraction f = this.multiplyBy(this); if (power % 2 == 0) { // if even... return f.pow(power/2); } else { // if odd... return f.pow(power/2).multiplyBy(this); } } } /** *

Gets the greatest common divisor of the absolute value of * two numbers, using the "binary gcd" method which avoids * division and modulo operations. See Knuth 4.5.2 algorithm B. * This algorithm is due to Josef Stein (1961).

* * @param u a non-zero number * @param v a non-zero number * @return the greatest common divisor, never zero */ private static int greatestCommonDivisor(int u, int v) { // From Commons Math: if (u == 0 || v == 0) { if (u == Integer.MIN_VALUE || v == Integer.MIN_VALUE) { throw new ArithmeticException("overflow: gcd is 2^31"); } return Math.abs(u) + Math.abs(v); } //if either operand is abs 1, return 1: if (Math.abs(u) == 1 || Math.abs(v) == 1) { return 1; } // keep u and v negative, as negative integers range down to // -2^31, while positive numbers can only be as large as 2^31-1 // (i.e. we can't necessarily negate a negative number without // overflow) if (u>0) { u=-u; } // make u negative if (v>0) { v=-v; } // make v negative // B1. [Find power of 2] int k=0; while ((u&1)==0 && (v&1)==0 && k<31) { // while u and v are both even... u/=2; v/=2; k++; // cast out twos. } if (k==31) { throw new ArithmeticException("overflow: gcd is 2^31"); } // B2. Initialize: u and v have been divided by 2^k and at least // one is odd. int t = (u&1)==1 ? v : -(u/2)/*B3*/; // t negative: u was odd, v may be even (t replaces v) // t positive: u was even, v is odd (t replaces u) do { /* assert u<0 && v<0; */ // B4/B3: cast out twos from t. while ((t&1)==0) { // while t is even.. t/=2; // cast out twos } // B5 [reset max(u,v)] if (t>0) { u = -t; } else { v = t; } // B6/B3. at this point both u and v should be odd. t = (v - u)/2; // |u| larger: t positive (replace u) // |v| larger: t negative (replace v) } while (t!=0); return -u*(1<x*y
* @throws ArithmeticException if the result can not be represented as * an int */ private static int mulAndCheck(int x, int y) { long m = (long)x*(long)y; if (m < Integer.MIN_VALUE || m > Integer.MAX_VALUE) { throw new ArithmeticException("overflow: mul"); } return (int)m; } /** * Multiply two non-negative integers, checking for overflow. * * @param x a non-negative factor * @param y a non-negative factor * @return the product x*y * @throws ArithmeticException if the result can not be represented as * an int */ private static int mulPosAndCheck(int x, int y) { /* assert x>=0 && y>=0; */ long m = (long)x*(long)y; if (m > Integer.MAX_VALUE) { throw new ArithmeticException("overflow: mulPos"); } return (int)m; } /** * Add two integers, checking for overflow. * * @param x an addend * @param y an addend * @return the sum x+y * @throws ArithmeticException if the result can not be represented as * an int */ private static int addAndCheck(int x, int y) { long s = (long)x+(long)y; if (s < Integer.MIN_VALUE || s > Integer.MAX_VALUE) { throw new ArithmeticException("overflow: add"); } return (int)s; } /** * Subtract two integers, checking for overflow. * * @param x the minuend * @param y the subtrahend * @return the difference x-y * @throws ArithmeticException if the result can not be represented as * an int */ private static int subAndCheck(int x, int y) { long s = (long)x-(long)y; if (s < Integer.MIN_VALUE || s > Integer.MAX_VALUE) { throw new ArithmeticException("overflow: add"); } return (int)s; } /** *

Adds the value of this fraction to another, returning the result in reduced form. * The algorithm follows Knuth, 4.5.1.

* * @param fraction the fraction to add, must not be null * @return a Fraction instance with the resulting values * @throws IllegalArgumentException if the fraction is null * @throws ArithmeticException if the resulting numerator or denominator exceeds * Integer.MAX_VALUE */ public Fraction add(Fraction fraction) { return addSub(fraction, true /* add */); } /** *

Subtracts the value of another fraction from the value of this one, * returning the result in reduced form.

* * @param fraction the fraction to subtract, must not be null * @return a Fraction instance with the resulting values * @throws IllegalArgumentException if the fraction is null * @throws ArithmeticException if the resulting numerator or denominator * cannot be represented in an int. */ public Fraction subtract(Fraction fraction) { return addSub(fraction, false /* subtract */); } /** * Implement add and subtract using algorithm described in Knuth 4.5.1. * * @param fraction the fraction to subtract, must not be null * @param isAdd true to add, false to subtract * @return a Fraction instance with the resulting values * @throws IllegalArgumentException if the fraction is null * @throws ArithmeticException if the resulting numerator or denominator * cannot be represented in an int. */ private Fraction addSub(Fraction fraction, boolean isAdd) { if (fraction == null) { throw new IllegalArgumentException("The fraction must not be null"); } // zero is identity for addition. if (numerator == 0) { return isAdd ? fraction : fraction.negate(); } if (fraction.numerator == 0) { return this; } // if denominators are randomly distributed, d1 will be 1 about 61% // of the time. int d1 = greatestCommonDivisor(denominator, fraction.denominator); if (d1==1) { // result is ( (u*v' +/- u'v) / u'v') int uvp = mulAndCheck(numerator, fraction.denominator); int upv = mulAndCheck(fraction.numerator, denominator); return new Fraction (isAdd ? addAndCheck(uvp, upv) : subAndCheck(uvp, upv), mulPosAndCheck(denominator, fraction.denominator)); } // the quantity 't' requires 65 bits of precision; see knuth 4.5.1 // exercise 7. we're going to use a BigInteger. // t = u(v'/d1) +/- v(u'/d1) BigInteger uvp = BigInteger.valueOf(numerator) .multiply(BigInteger.valueOf(fraction.denominator/d1)); BigInteger upv = BigInteger.valueOf(fraction.numerator) .multiply(BigInteger.valueOf(denominator/d1)); BigInteger t = isAdd ? uvp.add(upv) : uvp.subtract(upv); // but d2 doesn't need extra precision because // d2 = gcd(t,d1) = gcd(t mod d1, d1) int tmodd1 = t.mod(BigInteger.valueOf(d1)).intValue(); int d2 = tmodd1==0?d1:greatestCommonDivisor(tmodd1, d1); // result is (t/d2) / (u'/d1)(v'/d2) BigInteger w = t.divide(BigInteger.valueOf(d2)); if (w.bitLength() > 31) { throw new ArithmeticException ("overflow: numerator too large after multiply"); } return new Fraction (w.intValue(), mulPosAndCheck(denominator/d1, fraction.denominator/d2)); } /** *

Multiplies the value of this fraction by another, returning the * result in reduced form.

* * @param fraction the fraction to multiply by, must not be null * @return a Fraction instance with the resulting values * @throws IllegalArgumentException if the fraction is null * @throws ArithmeticException if the resulting numerator or denominator exceeds * Integer.MAX_VALUE */ public Fraction multiplyBy(Fraction fraction) { if (fraction == null) { throw new IllegalArgumentException("The fraction must not be null"); } if (numerator == 0 || fraction.numerator == 0) { return ZERO; } // knuth 4.5.1 // make sure we don't overflow unless the result *must* overflow. int d1 = greatestCommonDivisor(numerator, fraction.denominator); int d2 = greatestCommonDivisor(fraction.numerator, denominator); return getReducedFraction (mulAndCheck(numerator/d1, fraction.numerator/d2), mulPosAndCheck(denominator/d2, fraction.denominator/d1)); } /** *

Divide the value of this fraction by another.

* * @param fraction the fraction to divide by, must not be null * @return a Fraction instance with the resulting values * @throws IllegalArgumentException if the fraction is null * @throws ArithmeticException if the fraction to divide by is zero * @throws ArithmeticException if the resulting numerator or denominator exceeds * Integer.MAX_VALUE */ public Fraction divideBy(Fraction fraction) { if (fraction == null) { throw new IllegalArgumentException("The fraction must not be null"); } if (fraction.numerator == 0) { throw new ArithmeticException("The fraction to divide by must not be zero"); } return multiplyBy(fraction.invert()); } // Basics //------------------------------------------------------------------- /** *

Compares this fraction to another object to test if they are equal.

. * *

To be equal, both values must be equal. Thus 2/4 is not equal to 1/2.

* * @param obj the reference object with which to compare * @return true if this object is equal */ @Override public boolean equals(Object obj) { if (obj == this) { return true; } if (obj instanceof Fraction == false) { return false; } Fraction other = (Fraction) obj; return getNumerator() == other.getNumerator() && getDenominator() == other.getDenominator(); } /** *

Gets a hashCode for the fraction.

* * @return a hash code value for this object */ @Override public int hashCode() { if (hashCode == 0) { // hashcode update should be atomic. hashCode = 37 * (37 * 17 + getNumerator()) + getDenominator(); } return hashCode; } /** *

Compares this object to another based on size.

* *

Note: this class has a natural ordering that is inconsistent * with equals, because, for example, equals treats 1/2 and 2/4 as * different, whereas compareTo treats them as equal. * * @param other the object to compare to * @return -1 if this is less, 0 if equal, +1 if greater * @throws ClassCastException if the object is not a Fraction * @throws NullPointerException if the object is null */ public int compareTo(Fraction other) { if (this==other) { return 0; } if (numerator == other.numerator && denominator == other.denominator) { return 0; } // otherwise see which is less long first = (long) numerator * (long) other.denominator; long second = (long) other.numerator * (long) denominator; if (first == second) { return 0; } else if (first < second) { return -1; } else { return 1; } } /** *

Gets the fraction as a String.

* *

The format used is 'numerator/denominator' always. * * @return a String form of the fraction */ @Override public String toString() { if (toString == null) { toString = new StringBuilder(32) .append(getNumerator()) .append('/') .append(getDenominator()).toString(); } return toString; } /** *

Gets the fraction as a proper String in the format X Y/Z.

* *

The format used in 'wholeNumber numerator/denominator'. * If the whole number is zero it will be ommitted. If the numerator is zero, * only the whole number is returned.

* * @return a String form of the fraction */ public String toProperString() { if (toProperString == null) { if (numerator == 0) { toProperString = "0"; } else if (numerator == denominator) { toProperString = "1"; } else if (numerator == -1 * denominator) { toProperString = "-1"; } else if ((numerator>0?-numerator:numerator) < -denominator) { // note that we do the magnitude comparison test above with // NEGATIVE (not positive) numbers, since negative numbers // have a larger range. otherwise numerator==Integer.MIN_VALUE // is handled incorrectly. int properNumerator = getProperNumerator(); if (properNumerator == 0) { toProperString = Integer.toString(getProperWhole()); } else { toProperString = new StringBuilder(32) .append(getProperWhole()).append(' ') .append(properNumerator).append('/') .append(getDenominator()).toString(); } } else { toProperString = new StringBuilder(32) .append(getNumerator()).append('/') .append(getDenominator()).toString(); } } return toProperString; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy