org.apache.commons.lang3.ArrayUtils Maven / Gradle / Ivy
Show all versions of commons-lang3 Show documentation
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.lang3;
import java.lang.reflect.Array;
import java.lang.reflect.Field;
import java.lang.reflect.Method;
import java.lang.reflect.Type;
import java.util.Arrays;
import java.util.BitSet;
import java.util.Comparator;
import java.util.HashMap;
import java.util.Map;
import java.util.Random;
import org.apache.commons.lang3.builder.EqualsBuilder;
import org.apache.commons.lang3.builder.HashCodeBuilder;
import org.apache.commons.lang3.builder.ToStringBuilder;
import org.apache.commons.lang3.builder.ToStringStyle;
import org.apache.commons.lang3.math.NumberUtils;
import org.apache.commons.lang3.mutable.MutableInt;
/**
* Operations on arrays, primitive arrays (like {@code int[]}) and
* primitive wrapper arrays (like {@code Integer[]}).
*
*
This class tries to handle {@code null} input gracefully.
* An exception will not be thrown for a {@code null}
* array input. However, an Object array that contains a {@code null}
* element may throw an exception. Each method documents its behaviour.
*
*
#ThreadSafe#
* @since 2.0
*/
public class ArrayUtils {
/**
* An empty immutable {@code boolean} array.
*/
public static final boolean[] EMPTY_BOOLEAN_ARRAY = new boolean[0];
/**
* An empty immutable {@code Boolean} array.
*/
public static final Boolean[] EMPTY_BOOLEAN_OBJECT_ARRAY = new Boolean[0];
/**
* An empty immutable {@code byte} array.
*/
public static final byte[] EMPTY_BYTE_ARRAY = new byte[0];
/**
* An empty immutable {@code Byte} array.
*/
public static final Byte[] EMPTY_BYTE_OBJECT_ARRAY = new Byte[0];
/**
* An empty immutable {@code char} array.
*/
public static final char[] EMPTY_CHAR_ARRAY = new char[0];
/**
* An empty immutable {@code Character} array.
*/
public static final Character[] EMPTY_CHARACTER_OBJECT_ARRAY = new Character[0];
/**
* An empty immutable {@code Class} array.
*/
public static final Class>[] EMPTY_CLASS_ARRAY = new Class[0];
/**
* An empty immutable {@code double} array.
*/
public static final double[] EMPTY_DOUBLE_ARRAY = new double[0];
/**
* An empty immutable {@code Double} array.
*/
public static final Double[] EMPTY_DOUBLE_OBJECT_ARRAY = new Double[0];
/**
* An empty immutable {@code Field} array.
*
* @since 3.10
*/
public static final Field[] EMPTY_FIELD_ARRAY = new Field[0];
/**
* An empty immutable {@code Method} array.
*
* @since 3.10
*/
public static final Method[] EMPTY_METHOD_ARRAY = new Method[0];
/**
* An empty immutable {@code float} array.
*/
public static final float[] EMPTY_FLOAT_ARRAY = new float[0];
/**
* An empty immutable {@code Float} array.
*/
public static final Float[] EMPTY_FLOAT_OBJECT_ARRAY = new Float[0];
/**
* An empty immutable {@code int} array.
*/
public static final int[] EMPTY_INT_ARRAY = new int[0];
/**
* An empty immutable {@code Integer} array.
*/
public static final Integer[] EMPTY_INTEGER_OBJECT_ARRAY = new Integer[0];
/**
* An empty immutable {@code long} array.
*/
public static final long[] EMPTY_LONG_ARRAY = new long[0];
/**
* An empty immutable {@code Long} array.
*/
public static final Long[] EMPTY_LONG_OBJECT_ARRAY = new Long[0];
/**
* An empty immutable {@code Object} array.
*/
public static final Object[] EMPTY_OBJECT_ARRAY = new Object[0];
/**
* An empty immutable {@code short} array.
*/
public static final short[] EMPTY_SHORT_ARRAY = new short[0];
/**
* An empty immutable {@code Short} array.
*/
public static final Short[] EMPTY_SHORT_OBJECT_ARRAY = new Short[0];
/**
* An empty immutable {@code String} array.
*/
public static final String[] EMPTY_STRING_ARRAY = new String[0];
/**
* An empty immutable {@code Throwable} array.
*
* @since 3.10
*/
public static final Throwable[] EMPTY_THROWABLE_ARRAY = new Throwable[0];
/**
* An empty immutable {@code Type} array.
*
* @since 3.10
*/
public static final Type[] EMPTY_TYPE_ARRAY = new Type[0];
/**
* The index value when an element is not found in a list or array: {@code -1}.
* This value is returned by methods in this class and can also be used in comparisons with values returned by
* various method from {@link java.util.List}.
*/
public static final int INDEX_NOT_FOUND = -1;
/**
*
Copies the given array and adds the given element at the end of the new array.
*
*
The new array contains the same elements of the input
* array plus the given element in the last position. The component type of
* the new array is the same as that of the input array.
*
*
If the input array is {@code null}, a new one element array is returned
* whose component type is the same as the element.
*
*
* ArrayUtils.add(null, true) = [true]
* ArrayUtils.add([true], false) = [true, false]
* ArrayUtils.add([true, false], true) = [true, false, true]
*
*
* @param array the array to copy and add the element to, may be {@code null}
* @param element the object to add at the last index of the new array
* @return A new array containing the existing elements plus the new element
* @since 2.1
*/
public static boolean[] add(final boolean[] array, final boolean element) {
final boolean[] newArray = (boolean[]) copyArrayGrow1(array, Boolean.TYPE);
newArray[newArray.length - 1] = element;
return newArray;
}
/**
* Inserts the specified element at the specified position in the array.
* Shifts the element currently at that position (if any) and any subsequent
* elements to the right (adds one to their indices).
*
*
This method returns a new array with the same elements of the input
* array plus the given element on the specified position. The component
* type of the returned array is always the same as that of the input
* array.
*
*
If the input array is {@code null}, a new one element array is returned
* whose component type is the same as the element.
*
*
* ArrayUtils.add(null, 0, true) = [true]
* ArrayUtils.add([true], 0, false) = [false, true]
* ArrayUtils.add([false], 1, true) = [false, true]
* ArrayUtils.add([true, false], 1, true) = [true, true, false]
*
*
* @param array the array to add the element to, may be {@code null}
* @param index the position of the new object
* @param element the object to add
* @return A new array containing the existing elements and the new element
* @throws IndexOutOfBoundsException if the index is out of range (index < 0 || index > array.length).
* @deprecated this method has been superseded by {@link #insert(int, boolean[], boolean...)} and
* may be removed in a future release. Please note the handling of {@code null} input arrays differs
* in the new method: inserting {@code X} into a {@code null} array results in {@code null} not {@code X}.
*/
@Deprecated
public static boolean[] add(final boolean[] array, final int index, final boolean element) {
return (boolean[]) add(array, index, Boolean.valueOf(element), Boolean.TYPE);
}
/**
* Copies the given array and adds the given element at the end of the new array.
*
*
The new array contains the same elements of the input
* array plus the given element in the last position. The component type of
* the new array is the same as that of the input array.
*
*
If the input array is {@code null}, a new one element array is returned
* whose component type is the same as the element.
*
*
* ArrayUtils.add(null, 0) = [0]
* ArrayUtils.add([1], 0) = [1, 0]
* ArrayUtils.add([1, 0], 1) = [1, 0, 1]
*
*
* @param array the array to copy and add the element to, may be {@code null}
* @param element the object to add at the last index of the new array
* @return A new array containing the existing elements plus the new element
* @since 2.1
*/
public static byte[] add(final byte[] array, final byte element) {
final byte[] newArray = (byte[]) copyArrayGrow1(array, Byte.TYPE);
newArray[newArray.length - 1] = element;
return newArray;
}
/**
* Inserts the specified element at the specified position in the array.
* Shifts the element currently at that position (if any) and any subsequent
* elements to the right (adds one to their indices).
*
*
This method returns a new array with the same elements of the input
* array plus the given element on the specified position. The component
* type of the returned array is always the same as that of the input
* array.
*
*
If the input array is {@code null}, a new one element array is returned
* whose component type is the same as the element.
*
*
* ArrayUtils.add([1], 0, 2) = [2, 1]
* ArrayUtils.add([2, 6], 2, 3) = [2, 6, 3]
* ArrayUtils.add([2, 6], 0, 1) = [1, 2, 6]
* ArrayUtils.add([2, 6, 3], 2, 1) = [2, 6, 1, 3]
*
*
* @param array the array to add the element to, may be {@code null}
* @param index the position of the new object
* @param element the object to add
* @return A new array containing the existing elements and the new element
* @throws IndexOutOfBoundsException if the index is out of range
* (index < 0 || index > array.length).
* @deprecated this method has been superseded by {@link #insert(int, byte[], byte...)} and
* may be removed in a future release. Please note the handling of {@code null} input arrays differs
* in the new method: inserting {@code X} into a {@code null} array results in {@code null} not {@code X}.
*/
@Deprecated
public static byte[] add(final byte[] array, final int index, final byte element) {
return (byte[]) add(array, index, Byte.valueOf(element), Byte.TYPE);
}
/**
* Copies the given array and adds the given element at the end of the new array.
*
*
The new array contains the same elements of the input
* array plus the given element in the last position. The component type of
* the new array is the same as that of the input array.
*
*
If the input array is {@code null}, a new one element array is returned
* whose component type is the same as the element.
*
*
* ArrayUtils.add(null, '0') = ['0']
* ArrayUtils.add(['1'], '0') = ['1', '0']
* ArrayUtils.add(['1', '0'], '1') = ['1', '0', '1']
*
*
* @param array the array to copy and add the element to, may be {@code null}
* @param element the object to add at the last index of the new array
* @return A new array containing the existing elements plus the new element
* @since 2.1
*/
public static char[] add(final char[] array, final char element) {
final char[] newArray = (char[]) copyArrayGrow1(array, Character.TYPE);
newArray[newArray.length - 1] = element;
return newArray;
}
/**
* Inserts the specified element at the specified position in the array.
* Shifts the element currently at that position (if any) and any subsequent
* elements to the right (adds one to their indices).
*
*
This method returns a new array with the same elements of the input
* array plus the given element on the specified position. The component
* type of the returned array is always the same as that of the input
* array.
*
*
If the input array is {@code null}, a new one element array is returned
* whose component type is the same as the element.
*
*
* ArrayUtils.add(null, 0, 'a') = ['a']
* ArrayUtils.add(['a'], 0, 'b') = ['b', 'a']
* ArrayUtils.add(['a', 'b'], 0, 'c') = ['c', 'a', 'b']
* ArrayUtils.add(['a', 'b'], 1, 'k') = ['a', 'k', 'b']
* ArrayUtils.add(['a', 'b', 'c'], 1, 't') = ['a', 't', 'b', 'c']
*
*
* @param array the array to add the element to, may be {@code null}
* @param index the position of the new object
* @param element the object to add
* @return A new array containing the existing elements and the new element
* @throws IndexOutOfBoundsException if the index is out of range
* (index < 0 || index > array.length).
* @deprecated this method has been superseded by {@link #insert(int, char[], char...)} and
* may be removed in a future release. Please note the handling of {@code null} input arrays differs
* in the new method: inserting {@code X} into a {@code null} array results in {@code null} not {@code X}.
*/
@Deprecated
public static char[] add(final char[] array, final int index, final char element) {
return (char[]) add(array, index, Character.valueOf(element), Character.TYPE);
}
/**
* Copies the given array and adds the given element at the end of the new array.
*
*
The new array contains the same elements of the input
* array plus the given element in the last position. The component type of
* the new array is the same as that of the input array.
*
*
If the input array is {@code null}, a new one element array is returned
* whose component type is the same as the element.
*
*
* ArrayUtils.add(null, 0) = [0]
* ArrayUtils.add([1], 0) = [1, 0]
* ArrayUtils.add([1, 0], 1) = [1, 0, 1]
*
*
* @param array the array to copy and add the element to, may be {@code null}
* @param element the object to add at the last index of the new array
* @return A new array containing the existing elements plus the new element
* @since 2.1
*/
public static double[] add(final double[] array, final double element) {
final double[] newArray = (double[]) copyArrayGrow1(array, Double.TYPE);
newArray[newArray.length - 1] = element;
return newArray;
}
/**
* Inserts the specified element at the specified position in the array.
* Shifts the element currently at that position (if any) and any subsequent
* elements to the right (adds one to their indices).
*
*
This method returns a new array with the same elements of the input
* array plus the given element on the specified position. The component
* type of the returned array is always the same as that of the input
* array.
*
*
If the input array is {@code null}, a new one element array is returned
* whose component type is the same as the element.
*
*
* ArrayUtils.add([1.1], 0, 2.2) = [2.2, 1.1]
* ArrayUtils.add([2.3, 6.4], 2, 10.5) = [2.3, 6.4, 10.5]
* ArrayUtils.add([2.6, 6.7], 0, -4.8) = [-4.8, 2.6, 6.7]
* ArrayUtils.add([2.9, 6.0, 0.3], 2, 1.0) = [2.9, 6.0, 1.0, 0.3]
*
*
* @param array the array to add the element to, may be {@code null}
* @param index the position of the new object
* @param element the object to add
* @return A new array containing the existing elements and the new element
* @throws IndexOutOfBoundsException if the index is out of range
* (index < 0 || index > array.length).
* @deprecated this method has been superseded by {@link #insert(int, double[], double...)} and
* may be removed in a future release. Please note the handling of {@code null} input arrays differs
* in the new method: inserting {@code X} into a {@code null} array results in {@code null} not {@code X}.
*/
@Deprecated
public static double[] add(final double[] array, final int index, final double element) {
return (double[]) add(array, index, Double.valueOf(element), Double.TYPE);
}
/**
* Copies the given array and adds the given element at the end of the new array.
*
*
The new array contains the same elements of the input
* array plus the given element in the last position. The component type of
* the new array is the same as that of the input array.
*
*
If the input array is {@code null}, a new one element array is returned
* whose component type is the same as the element.
*
*
* ArrayUtils.add(null, 0) = [0]
* ArrayUtils.add([1], 0) = [1, 0]
* ArrayUtils.add([1, 0], 1) = [1, 0, 1]
*
*
* @param array the array to copy and add the element to, may be {@code null}
* @param element the object to add at the last index of the new array
* @return A new array containing the existing elements plus the new element
* @since 2.1
*/
public static float[] add(final float[] array, final float element) {
final float[] newArray = (float[]) copyArrayGrow1(array, Float.TYPE);
newArray[newArray.length - 1] = element;
return newArray;
}
/**
* Inserts the specified element at the specified position in the array.
* Shifts the element currently at that position (if any) and any subsequent
* elements to the right (adds one to their indices).
*
*
This method returns a new array with the same elements of the input
* array plus the given element on the specified position. The component
* type of the returned array is always the same as that of the input
* array.
*
*
If the input array is {@code null}, a new one element array is returned
* whose component type is the same as the element.
*
*
* ArrayUtils.add([1.1f], 0, 2.2f) = [2.2f, 1.1f]
* ArrayUtils.add([2.3f, 6.4f], 2, 10.5f) = [2.3f, 6.4f, 10.5f]
* ArrayUtils.add([2.6f, 6.7f], 0, -4.8f) = [-4.8f, 2.6f, 6.7f]
* ArrayUtils.add([2.9f, 6.0f, 0.3f], 2, 1.0f) = [2.9f, 6.0f, 1.0f, 0.3f]
*
*
* @param array the array to add the element to, may be {@code null}
* @param index the position of the new object
* @param element the object to add
* @return A new array containing the existing elements and the new element
* @throws IndexOutOfBoundsException if the index is out of range
* (index < 0 || index > array.length).
* @deprecated this method has been superseded by {@link #insert(int, float[], float...)} and
* may be removed in a future release. Please note the handling of {@code null} input arrays differs
* in the new method: inserting {@code X} into a {@code null} array results in {@code null} not {@code X}.
*/
@Deprecated
public static float[] add(final float[] array, final int index, final float element) {
return (float[]) add(array, index, Float.valueOf(element), Float.TYPE);
}
/**
* Copies the given array and adds the given element at the end of the new array.
*
*
The new array contains the same elements of the input
* array plus the given element in the last position. The component type of
* the new array is the same as that of the input array.
*
*
If the input array is {@code null}, a new one element array is returned
* whose component type is the same as the element.
*
*
* ArrayUtils.add(null, 0) = [0]
* ArrayUtils.add([1], 0) = [1, 0]
* ArrayUtils.add([1, 0], 1) = [1, 0, 1]
*
*
* @param array the array to copy and add the element to, may be {@code null}
* @param element the object to add at the last index of the new array
* @return A new array containing the existing elements plus the new element
* @since 2.1
*/
public static int[] add(final int[] array, final int element) {
final int[] newArray = (int[]) copyArrayGrow1(array, Integer.TYPE);
newArray[newArray.length - 1] = element;
return newArray;
}
/**
* Inserts the specified element at the specified position in the array.
* Shifts the element currently at that position (if any) and any subsequent
* elements to the right (adds one to their indices).
*
*
This method returns a new array with the same elements of the input
* array plus the given element on the specified position. The component
* type of the returned array is always the same as that of the input
* array.
*
*
If the input array is {@code null}, a new one element array is returned
* whose component type is the same as the element.
*
*
* ArrayUtils.add([1], 0, 2) = [2, 1]
* ArrayUtils.add([2, 6], 2, 10) = [2, 6, 10]
* ArrayUtils.add([2, 6], 0, -4) = [-4, 2, 6]
* ArrayUtils.add([2, 6, 3], 2, 1) = [2, 6, 1, 3]
*
*
* @param array the array to add the element to, may be {@code null}
* @param index the position of the new object
* @param element the object to add
* @return A new array containing the existing elements and the new element
* @throws IndexOutOfBoundsException if the index is out of range
* (index < 0 || index > array.length).
* @deprecated this method has been superseded by {@link #insert(int, int[], int...)} and
* may be removed in a future release. Please note the handling of {@code null} input arrays differs
* in the new method: inserting {@code X} into a {@code null} array results in {@code null} not {@code X}.
*/
@Deprecated
public static int[] add(final int[] array, final int index, final int element) {
return (int[]) add(array, index, Integer.valueOf(element), Integer.TYPE);
}
/**
* Inserts the specified element at the specified position in the array.
* Shifts the element currently at that position (if any) and any subsequent
* elements to the right (adds one to their indices).
*
*
This method returns a new array with the same elements of the input
* array plus the given element on the specified position. The component
* type of the returned array is always the same as that of the input
* array.
*
*
If the input array is {@code null}, a new one element array is returned
* whose component type is the same as the element.
*
*
* ArrayUtils.add([1L], 0, 2L) = [2L, 1L]
* ArrayUtils.add([2L, 6L], 2, 10L) = [2L, 6L, 10L]
* ArrayUtils.add([2L, 6L], 0, -4L) = [-4L, 2L, 6L]
* ArrayUtils.add([2L, 6L, 3L], 2, 1L) = [2L, 6L, 1L, 3L]
*
*
* @param array the array to add the element to, may be {@code null}
* @param index the position of the new object
* @param element the object to add
* @return A new array containing the existing elements and the new element
* @throws IndexOutOfBoundsException if the index is out of range
* (index < 0 || index > array.length).
* @deprecated this method has been superseded by {@link #insert(int, long[], long...)} and
* may be removed in a future release. Please note the handling of {@code null} input arrays differs
* in the new method: inserting {@code X} into a {@code null} array results in {@code null} not {@code X}.
*/
@Deprecated
public static long[] add(final long[] array, final int index, final long element) {
return (long[]) add(array, index, Long.valueOf(element), Long.TYPE);
}
/**
* Copies the given array and adds the given element at the end of the new array.
*
*
The new array contains the same elements of the input
* array plus the given element in the last position. The component type of
* the new array is the same as that of the input array.
*
*
If the input array is {@code null}, a new one element array is returned
* whose component type is the same as the element.
*
*
* ArrayUtils.add(null, 0) = [0]
* ArrayUtils.add([1], 0) = [1, 0]
* ArrayUtils.add([1, 0], 1) = [1, 0, 1]
*
*
* @param array the array to copy and add the element to, may be {@code null}
* @param element the object to add at the last index of the new array
* @return A new array containing the existing elements plus the new element
* @since 2.1
*/
public static long[] add(final long[] array, final long element) {
final long[] newArray = (long[]) copyArrayGrow1(array, Long.TYPE);
newArray[newArray.length - 1] = element;
return newArray;
}
/**
* Underlying implementation of add(array, index, element) methods.
* The last parameter is the class, which may not equal element.getClass
* for primitives.
*
* @param array the array to add the element to, may be {@code null}
* @param index the position of the new object
* @param element the object to add
* @param clss the type of the element being added
* @return A new array containing the existing elements and the new element
*/
private static Object add(final Object array, final int index, final Object element, final Class> clss) {
if (array == null) {
if (index != 0) {
throw new IndexOutOfBoundsException("Index: " + index + ", Length: 0");
}
final Object joinedArray = Array.newInstance(clss, 1);
Array.set(joinedArray, 0, element);
return joinedArray;
}
final int length = Array.getLength(array);
if (index > length || index < 0) {
throw new IndexOutOfBoundsException("Index: " + index + ", Length: " + length);
}
final Object result = Array.newInstance(clss, length + 1);
System.arraycopy(array, 0, result, 0, index);
Array.set(result, index, element);
if (index < length) {
System.arraycopy(array, index, result, index + 1, length - index);
}
return result;
}
/**
* Inserts the specified element at the specified position in the array.
* Shifts the element currently at that position (if any) and any subsequent
* elements to the right (adds one to their indices).
*
*
This method returns a new array with the same elements of the input
* array plus the given element on the specified position. The component
* type of the returned array is always the same as that of the input
* array.
*
*
If the input array is {@code null}, a new one element array is returned
* whose component type is the same as the element.
*
*
* ArrayUtils.add([1], 0, 2) = [2, 1]
* ArrayUtils.add([2, 6], 2, 10) = [2, 6, 10]
* ArrayUtils.add([2, 6], 0, -4) = [-4, 2, 6]
* ArrayUtils.add([2, 6, 3], 2, 1) = [2, 6, 1, 3]
*
*
* @param array the array to add the element to, may be {@code null}
* @param index the position of the new object
* @param element the object to add
* @return A new array containing the existing elements and the new element
* @throws IndexOutOfBoundsException if the index is out of range
* (index < 0 || index > array.length).
* @deprecated this method has been superseded by {@link #insert(int, short[], short...)} and
* may be removed in a future release. Please note the handling of {@code null} input arrays differs
* in the new method: inserting {@code X} into a {@code null} array results in {@code null} not {@code X}.
*/
@Deprecated
public static short[] add(final short[] array, final int index, final short element) {
return (short[]) add(array, index, Short.valueOf(element), Short.TYPE);
}
/**
* Copies the given array and adds the given element at the end of the new array.
*
*
The new array contains the same elements of the input
* array plus the given element in the last position. The component type of
* the new array is the same as that of the input array.
*
*
If the input array is {@code null}, a new one element array is returned
* whose component type is the same as the element.
*
*
* ArrayUtils.add(null, 0) = [0]
* ArrayUtils.add([1], 0) = [1, 0]
* ArrayUtils.add([1, 0], 1) = [1, 0, 1]
*
*
* @param array the array to copy and add the element to, may be {@code null}
* @param element the object to add at the last index of the new array
* @return A new array containing the existing elements plus the new element
* @since 2.1
*/
public static short[] add(final short[] array, final short element) {
final short[] newArray = (short[]) copyArrayGrow1(array, Short.TYPE);
newArray[newArray.length - 1] = element;
return newArray;
}
/**
* Inserts the specified element at the specified position in the array.
* Shifts the element currently at that position (if any) and any subsequent
* elements to the right (adds one to their indices).
*
*
This method returns a new array with the same elements of the input
* array plus the given element on the specified position. The component
* type of the returned array is always the same as that of the input
* array.
*
*
If the input array is {@code null}, a new one element array is returned
* whose component type is the same as the element.
*
*
* ArrayUtils.add(null, 0, null) = IllegalArgumentException
* ArrayUtils.add(null, 0, "a") = ["a"]
* ArrayUtils.add(["a"], 1, null) = ["a", null]
* ArrayUtils.add(["a"], 1, "b") = ["a", "b"]
* ArrayUtils.add(["a", "b"], 3, "c") = ["a", "b", "c"]
*
*
* @param the component type of the array
* @param array the array to add the element to, may be {@code null}
* @param index the position of the new object
* @param element the object to add
* @return A new array containing the existing elements and the new element
* @throws IndexOutOfBoundsException if the index is out of range (index < 0 || index > array.length).
* @throws IllegalArgumentException if both array and element are null
* @deprecated this method has been superseded by {@link #insert(int, Object[], Object...) insert(int, T[], T...)} and
* may be removed in a future release. Please note the handling of {@code null} input arrays differs
* in the new method: inserting {@code X} into a {@code null} array results in {@code null} not {@code X}.
*/
@Deprecated
public static T[] add(final T[] array, final int index, final T element) {
Class> clss = null;
if (array != null) {
clss = array.getClass().getComponentType();
} else if (element != null) {
clss = element.getClass();
} else {
throw new IllegalArgumentException("Array and element cannot both be null");
}
@SuppressWarnings("unchecked") // the add method creates an array of type clss, which is type T
final T[] newArray = (T[]) add(array, index, element, clss);
return newArray;
}
/**
* Copies the given array and adds the given element at the end of the new array.
*
*
The new array contains the same elements of the input
* array plus the given element in the last position. The component type of
* the new array is the same as that of the input array.
*
*
If the input array is {@code null}, a new one element array is returned
* whose component type is the same as the element, unless the element itself is null,
* in which case the return type is Object[]
*
*
* ArrayUtils.add(null, null) = IllegalArgumentException
* ArrayUtils.add(null, "a") = ["a"]
* ArrayUtils.add(["a"], null) = ["a", null]
* ArrayUtils.add(["a"], "b") = ["a", "b"]
* ArrayUtils.add(["a", "b"], "c") = ["a", "b", "c"]
*
*
* @param the component type of the array
* @param array the array to "add" the element to, may be {@code null}
* @param element the object to add, may be {@code null}
* @return A new array containing the existing elements plus the new element
* The returned array type will be that of the input array (unless null),
* in which case it will have the same type as the element.
* If both are null, an IllegalArgumentException is thrown
* @since 2.1
* @throws IllegalArgumentException if both arguments are null
*/
public static T[] add(final T[] array, final T element) {
Class> type;
if (array != null) {
type = array.getClass().getComponentType();
} else if (element != null) {
type = element.getClass();
} else {
throw new IllegalArgumentException("Arguments cannot both be null");
}
@SuppressWarnings("unchecked") // type must be T
final
T[] newArray = (T[]) copyArrayGrow1(array, type);
newArray[newArray.length - 1] = element;
return newArray;
}
/**
* Adds all the elements of the given arrays into a new array.
*
The new array contains all of the element of {@code array1} followed
* by all of the elements {@code array2}. When an array is returned, it is always
* a new array.
*
*
* ArrayUtils.addAll(array1, null) = cloned copy of array1
* ArrayUtils.addAll(null, array2) = cloned copy of array2
* ArrayUtils.addAll([], []) = []
*
*
* @param array1 the first array whose elements are added to the new array.
* @param array2 the second array whose elements are added to the new array.
* @return The new boolean[] array.
* @since 2.1
*/
public static boolean[] addAll(final boolean[] array1, final boolean... array2) {
if (array1 == null) {
return clone(array2);
} else if (array2 == null) {
return clone(array1);
}
final boolean[] joinedArray = new boolean[array1.length + array2.length];
System.arraycopy(array1, 0, joinedArray, 0, array1.length);
System.arraycopy(array2, 0, joinedArray, array1.length, array2.length);
return joinedArray;
}
/**
* Adds all the elements of the given arrays into a new array.
*
The new array contains all of the element of {@code array1} followed
* by all of the elements {@code array2}. When an array is returned, it is always
* a new array.
*
*
* ArrayUtils.addAll(array1, null) = cloned copy of array1
* ArrayUtils.addAll(null, array2) = cloned copy of array2
* ArrayUtils.addAll([], []) = []
*
*
* @param array1 the first array whose elements are added to the new array.
* @param array2 the second array whose elements are added to the new array.
* @return The new byte[] array.
* @since 2.1
*/
public static byte[] addAll(final byte[] array1, final byte... array2) {
if (array1 == null) {
return clone(array2);
} else if (array2 == null) {
return clone(array1);
}
final byte[] joinedArray = new byte[array1.length + array2.length];
System.arraycopy(array1, 0, joinedArray, 0, array1.length);
System.arraycopy(array2, 0, joinedArray, array1.length, array2.length);
return joinedArray;
}
/**
* Adds all the elements of the given arrays into a new array.
*
The new array contains all of the element of {@code array1} followed
* by all of the elements {@code array2}. When an array is returned, it is always
* a new array.
*
*
* ArrayUtils.addAll(array1, null) = cloned copy of array1
* ArrayUtils.addAll(null, array2) = cloned copy of array2
* ArrayUtils.addAll([], []) = []
*
*
* @param array1 the first array whose elements are added to the new array.
* @param array2 the second array whose elements are added to the new array.
* @return The new char[] array.
* @since 2.1
*/
public static char[] addAll(final char[] array1, final char... array2) {
if (array1 == null) {
return clone(array2);
} else if (array2 == null) {
return clone(array1);
}
final char[] joinedArray = new char[array1.length + array2.length];
System.arraycopy(array1, 0, joinedArray, 0, array1.length);
System.arraycopy(array2, 0, joinedArray, array1.length, array2.length);
return joinedArray;
}
/**
* Adds all the elements of the given arrays into a new array.
*
The new array contains all of the element of {@code array1} followed
* by all of the elements {@code array2}. When an array is returned, it is always
* a new array.
*
*
* ArrayUtils.addAll(array1, null) = cloned copy of array1
* ArrayUtils.addAll(null, array2) = cloned copy of array2
* ArrayUtils.addAll([], []) = []
*
*
* @param array1 the first array whose elements are added to the new array.
* @param array2 the second array whose elements are added to the new array.
* @return The new double[] array.
* @since 2.1
*/
public static double[] addAll(final double[] array1, final double... array2) {
if (array1 == null) {
return clone(array2);
} else if (array2 == null) {
return clone(array1);
}
final double[] joinedArray = new double[array1.length + array2.length];
System.arraycopy(array1, 0, joinedArray, 0, array1.length);
System.arraycopy(array2, 0, joinedArray, array1.length, array2.length);
return joinedArray;
}
/**
* Adds all the elements of the given arrays into a new array.
*
The new array contains all of the element of {@code array1} followed
* by all of the elements {@code array2}. When an array is returned, it is always
* a new array.
*
*
* ArrayUtils.addAll(array1, null) = cloned copy of array1
* ArrayUtils.addAll(null, array2) = cloned copy of array2
* ArrayUtils.addAll([], []) = []
*
*
* @param array1 the first array whose elements are added to the new array.
* @param array2 the second array whose elements are added to the new array.
* @return The new float[] array.
* @since 2.1
*/
public static float[] addAll(final float[] array1, final float... array2) {
if (array1 == null) {
return clone(array2);
} else if (array2 == null) {
return clone(array1);
}
final float[] joinedArray = new float[array1.length + array2.length];
System.arraycopy(array1, 0, joinedArray, 0, array1.length);
System.arraycopy(array2, 0, joinedArray, array1.length, array2.length);
return joinedArray;
}
/**
* Adds all the elements of the given arrays into a new array.
*
The new array contains all of the element of {@code array1} followed
* by all of the elements {@code array2}. When an array is returned, it is always
* a new array.
*
*
* ArrayUtils.addAll(array1, null) = cloned copy of array1
* ArrayUtils.addAll(null, array2) = cloned copy of array2
* ArrayUtils.addAll([], []) = []
*
*
* @param array1 the first array whose elements are added to the new array.
* @param array2 the second array whose elements are added to the new array.
* @return The new int[] array.
* @since 2.1
*/
public static int[] addAll(final int[] array1, final int... array2) {
if (array1 == null) {
return clone(array2);
} else if (array2 == null) {
return clone(array1);
}
final int[] joinedArray = new int[array1.length + array2.length];
System.arraycopy(array1, 0, joinedArray, 0, array1.length);
System.arraycopy(array2, 0, joinedArray, array1.length, array2.length);
return joinedArray;
}
/**
* Adds all the elements of the given arrays into a new array.
*
The new array contains all of the element of {@code array1} followed
* by all of the elements {@code array2}. When an array is returned, it is always
* a new array.
*
*
* ArrayUtils.addAll(array1, null) = cloned copy of array1
* ArrayUtils.addAll(null, array2) = cloned copy of array2
* ArrayUtils.addAll([], []) = []
*
*
* @param array1 the first array whose elements are added to the new array.
* @param array2 the second array whose elements are added to the new array.
* @return The new long[] array.
* @since 2.1
*/
public static long[] addAll(final long[] array1, final long... array2) {
if (array1 == null) {
return clone(array2);
} else if (array2 == null) {
return clone(array1);
}
final long[] joinedArray = new long[array1.length + array2.length];
System.arraycopy(array1, 0, joinedArray, 0, array1.length);
System.arraycopy(array2, 0, joinedArray, array1.length, array2.length);
return joinedArray;
}
/**
* Adds all the elements of the given arrays into a new array.
*
The new array contains all of the element of {@code array1} followed
* by all of the elements {@code array2}. When an array is returned, it is always
* a new array.
*
*
* ArrayUtils.addAll(array1, null) = cloned copy of array1
* ArrayUtils.addAll(null, array2) = cloned copy of array2
* ArrayUtils.addAll([], []) = []
*
*
* @param array1 the first array whose elements are added to the new array.
* @param array2 the second array whose elements are added to the new array.
* @return The new short[] array.
* @since 2.1
*/
public static short[] addAll(final short[] array1, final short... array2) {
if (array1 == null) {
return clone(array2);
} else if (array2 == null) {
return clone(array1);
}
final short[] joinedArray = new short[array1.length + array2.length];
System.arraycopy(array1, 0, joinedArray, 0, array1.length);
System.arraycopy(array2, 0, joinedArray, array1.length, array2.length);
return joinedArray;
}
/**
* Adds all the elements of the given arrays into a new array.
*
The new array contains all of the element of {@code array1} followed
* by all of the elements {@code array2}. When an array is returned, it is always
* a new array.
*
*
* ArrayUtils.addAll(null, null) = null
* ArrayUtils.addAll(array1, null) = cloned copy of array1
* ArrayUtils.addAll(null, array2) = cloned copy of array2
* ArrayUtils.addAll([], []) = []
* ArrayUtils.addAll([null], [null]) = [null, null]
* ArrayUtils.addAll(["a", "b", "c"], ["1", "2", "3"]) = ["a", "b", "c", "1", "2", "3"]
*
*
* @param the component type of the array
* @param array1 the first array whose elements are added to the new array, may be {@code null}
* @param array2 the second array whose elements are added to the new array, may be {@code null}
* @return The new array, {@code null} if both arrays are {@code null}.
* The type of the new array is the type of the first array,
* unless the first array is null, in which case the type is the same as the second array.
* @since 2.1
* @throws IllegalArgumentException if the array types are incompatible
*/
public static T[] addAll(final T[] array1, @SuppressWarnings("unchecked") final T... array2) {
if (array1 == null) {
return clone(array2);
} else if (array2 == null) {
return clone(array1);
}
final Class> type1 = array1.getClass().getComponentType();
@SuppressWarnings("unchecked") // OK, because array is of type T
final T[] joinedArray = (T[]) Array.newInstance(type1, array1.length + array2.length);
System.arraycopy(array1, 0, joinedArray, 0, array1.length);
try {
System.arraycopy(array2, 0, joinedArray, array1.length, array2.length);
} catch (final ArrayStoreException ase) {
// Check if problem was due to incompatible types
/*
* We do this here, rather than before the copy because:
* - it would be a wasted check most of the time
* - safer, in case check turns out to be too strict
*/
final Class> type2 = array2.getClass().getComponentType();
if (!type1.isAssignableFrom(type2)) {
throw new IllegalArgumentException("Cannot store " + type2.getName() + " in an array of "
+ type1.getName(), ase);
}
throw ase; // No, so rethrow original
}
return joinedArray;
}
/**
* Copies the given array and adds the given element at the beginning of the new array.
*
*
* The new array contains the same elements of the input array plus the given element in the first position. The
* component type of the new array is the same as that of the input array.
*
*
*
* If the input array is {@code null}, a new one element array is returned whose component type is the same as the
* element.
*
*
*
* ArrayUtils.add(null, true) = [true]
* ArrayUtils.add([true], false) = [false, true]
* ArrayUtils.add([true, false], true) = [true, true, false]
*
*
* @param array the array to "add" the element to, may be {@code null}.
* @param element the object to add.
* @return A new array containing the existing elements plus the new element The returned array type will be that of
* the input array (unless null), in which case it will have the same type as the element.
* @since 3.10
*/
public static boolean[] addFirst(final boolean[] array, final boolean element) {
return array == null ? add(array, element) : insert(0, array, element);
}
/**
* Copies the given array and adds the given element at the beginning of the new array.
*
*
* The new array contains the same elements of the input array plus the given element in the first position. The
* component type of the new array is the same as that of the input array.
*
*
*
* If the input array is {@code null}, a new one element array is returned whose component type is the same as the
* element.
*
*
*
* ArrayUtils.add(null, 1) = [1]
* ArrayUtils.add([1], 0) = [0, 1]
* ArrayUtils.add([1, 0], 1) = [1, 1, 0]
*
*
* @param array the array to "add" the element to, may be {@code null}.
* @param element the object to add.
* @return A new array containing the existing elements plus the new element The returned array type will be that of
* the input array (unless null), in which case it will have the same type as the element.
* @since 3.10
*/
public static byte[] addFirst(final byte[] array, final byte element) {
return array == null ? add(array, element) : insert(0, array, element);
}
/**
* Copies the given array and adds the given element at the beginning of the new array.
*
*
* The new array contains the same elements of the input array plus the given element in the first position. The
* component type of the new array is the same as that of the input array.
*
*
*
* If the input array is {@code null}, a new one element array is returned whose component type is the same as the
* element.
*
*
*
* ArrayUtils.add(null, '1') = ['1']
* ArrayUtils.add(['1'], '0') = ['0', '1']
* ArrayUtils.add(['1', '0'], '1') = ['1', '1', '0']
*
*
* @param array the array to "add" the element to, may be {@code null}.
* @param element the object to add.
* @return A new array containing the existing elements plus the new element The returned array type will be that of
* the input array (unless null), in which case it will have the same type as the element.
* @since 3.10
*/
public static char[] addFirst(final char[] array, final char element) {
return array == null ? add(array, element) : insert(0, array, element);
}
/**
* Copies the given array and adds the given element at the beginning of the new array.
*
*
* The new array contains the same elements of the input array plus the given element in the first position. The
* component type of the new array is the same as that of the input array.
*
*
*
* If the input array is {@code null}, a new one element array is returned whose component type is the same as the
* element.
*
*
*
* ArrayUtils.add(null, 1) = [1]
* ArrayUtils.add([1], 0) = [0, 1]
* ArrayUtils.add([1, 0], 1) = [1, 1, 0]
*
*
* @param array the array to "add" the element to, may be {@code null}.
* @param element the object to add.
* @return A new array containing the existing elements plus the new element The returned array type will be that of
* the input array (unless null), in which case it will have the same type as the element.
* @since 3.10
*/
public static double[] addFirst(final double[] array, final double element) {
return array == null ? add(array, element) : insert(0, array, element);
}
/**
* Copies the given array and adds the given element at the beginning of the new array.
*
*
* The new array contains the same elements of the input array plus the given element in the first position. The
* component type of the new array is the same as that of the input array.
*
*
*
* If the input array is {@code null}, a new one element array is returned whose component type is the same as the
* element.
*
*
*
* ArrayUtils.add(null, 1) = [1]
* ArrayUtils.add([1], 0) = [0, 1]
* ArrayUtils.add([1, 0], 1) = [1, 1, 0]
*
*
* @param array the array to "add" the element to, may be {@code null}.
* @param element the object to add.
* @return A new array containing the existing elements plus the new element The returned array type will be that of
* the input array (unless null), in which case it will have the same type as the element.
* @since 3.10
*/
public static float[] addFirst(final float[] array, final float element) {
return array == null ? add(array, element) : insert(0, array, element);
}
/**
* Copies the given array and adds the given element at the beginning of the new array.
*
*
* The new array contains the same elements of the input array plus the given element in the first position. The
* component type of the new array is the same as that of the input array.
*
*
*
* If the input array is {@code null}, a new one element array is returned whose component type is the same as the
* element.
*
*
*
* ArrayUtils.add(null, 1) = [1]
* ArrayUtils.add([1], 0) = [0, 1]
* ArrayUtils.add([1, 0], 1) = [1, 1, 0]
*
*
* @param array the array to "add" the element to, may be {@code null}.
* @param element the object to add.
* @return A new array containing the existing elements plus the new element The returned array type will be that of
* the input array (unless null), in which case it will have the same type as the element.
* @since 3.10
*/
public static int[] addFirst(final int[] array, final int element) {
return array == null ? add(array, element) : insert(0, array, element);
}
/**
* Copies the given array and adds the given element at the beginning of the new array.
*
*
* The new array contains the same elements of the input array plus the given element in the first position. The
* component type of the new array is the same as that of the input array.
*
*
*
* If the input array is {@code null}, a new one element array is returned whose component type is the same as the
* element.
*
*
*
* ArrayUtils.add(null, 1) = [1]
* ArrayUtils.add([1], 0) = [0, 1]
* ArrayUtils.add([1, 0], 1) = [1, 1, 0]
*
*
* @param array the array to "add" the element to, may be {@code null}.
* @param element the object to add.
* @return A new array containing the existing elements plus the new element The returned array type will be that of
* the input array (unless null), in which case it will have the same type as the element.
* @since 3.10
*/
public static long[] addFirst(final long[] array, final long element) {
return array == null ? add(array, element) : insert(0, array, element);
}
/**
* Copies the given array and adds the given element at the beginning of the new array.
*
*
* The new array contains the same elements of the input array plus the given element in the first position. The
* component type of the new array is the same as that of the input array.
*
*
*
* If the input array is {@code null}, a new one element array is returned whose component type is the same as the
* element.
*
*
*
* ArrayUtils.add(null, 1) = [1]
* ArrayUtils.add([1], 0) = [0, 1]
* ArrayUtils.add([1, 0], 1) = [1, 1, 0]
*
*
* @param array the array to "add" the element to, may be {@code null}.
* @param element the object to add.
* @return A new array containing the existing elements plus the new element The returned array type will be that of
* the input array (unless null), in which case it will have the same type as the element.
* @since 3.10
*/
public static short[] addFirst(final short[] array, final short element) {
return array == null ? add(array, element) : insert(0, array, element);
}
/**
* Copies the given array and adds the given element at the beginning of the new array.
*
*
* The new array contains the same elements of the input array plus the given element in the first positioaddFirstaddFirstaddFirstn. The
* component type of the new array is the same as that of the input array.
*
*
*
* If the input array is {@code null}, a new one element array is returned whose component type is the same as the
* element, unless the element itself is null, in which case the return type is Object[]
*
*
*
* ArrayUtils.add(null, null) = IllegalArgumentException
* ArrayUtils.add(null, "a") = ["a"]
* ArrayUtils.add(["a"], null) = [null, "a"]
* ArrayUtils.add(["a"], "b") = ["b", "a"]
* ArrayUtils.add(["a", "b"], "c") = ["c", "a", "b"]
*
*
* @param the component type of the array
* @param array the array to "add" the element to, may be {@code null}
* @param element the object to add, may be {@code null}
* @return A new array containing the existing elements plus the new element The returned array type will be that of
* the input array (unless null), in which case it will have the same type as the element. If both are null,
* an IllegalArgumentException is thrown
* @since 3.10
* @throws IllegalArgumentException if both arguments are null
*/
public static T[] addFirst(final T[] array, final T element) {
return array == null ? add(array, element) : insert(0, array, element);
}
/**
* Clones an array returning a typecast result and handling
* {@code null}.
*
*
This method returns {@code null} for a {@code null} input array.
*
* @param array the array to clone, may be {@code null}
* @return the cloned array, {@code null} if {@code null} input
*/
public static boolean[] clone(final boolean[] array) {
if (array == null) {
return null;
}
return array.clone();
}
/**
*
Clones an array returning a typecast result and handling
* {@code null}.
*
*
This method returns {@code null} for a {@code null} input array.
*
* @param array the array to clone, may be {@code null}
* @return the cloned array, {@code null} if {@code null} input
*/
public static byte[] clone(final byte[] array) {
if (array == null) {
return null;
}
return array.clone();
}
/**
*
Clones an array returning a typecast result and handling
* {@code null}.
*
*
This method returns {@code null} for a {@code null} input array.
*
* @param array the array to clone, may be {@code null}
* @return the cloned array, {@code null} if {@code null} input
*/
public static char[] clone(final char[] array) {
if (array == null) {
return null;
}
return array.clone();
}
/**
*
Clones an array returning a typecast result and handling
* {@code null}.
*
*
This method returns {@code null} for a {@code null} input array.
*
* @param array the array to clone, may be {@code null}
* @return the cloned array, {@code null} if {@code null} input
*/
public static double[] clone(final double[] array) {
if (array == null) {
return null;
}
return array.clone();
}
/**
*
Clones an array returning a typecast result and handling
* {@code null}.
*
*
This method returns {@code null} for a {@code null} input array.
*
* @param array the array to clone, may be {@code null}
* @return the cloned array, {@code null} if {@code null} input
*/
public static float[] clone(final float[] array) {
if (array == null) {
return null;
}
return array.clone();
}
/**
*
Clones an array returning a typecast result and handling
* {@code null}.
*
*
This method returns {@code null} for a {@code null} input array.
*
* @param array the array to clone, may be {@code null}
* @return the cloned array, {@code null} if {@code null} input
*/
public static int[] clone(final int[] array) {
if (array == null) {
return null;
}
return array.clone();
}
/**
*
Clones an array returning a typecast result and handling
* {@code null}.
*
*
This method returns {@code null} for a {@code null} input array.
*
* @param array the array to clone, may be {@code null}
* @return the cloned array, {@code null} if {@code null} input
*/
public static long[] clone(final long[] array) {
if (array == null) {
return null;
}
return array.clone();
}
/**
*
Clones an array returning a typecast result and handling
* {@code null}.
*
*
This method returns {@code null} for a {@code null} input array.
*
* @param array the array to clone, may be {@code null}
* @return the cloned array, {@code null} if {@code null} input
*/
public static short[] clone(final short[] array) {
if (array == null) {
return null;
}
return array.clone();
}
// Clone
//-----------------------------------------------------------------------
/**
*
Shallow clones an array returning a typecast result and handling
* {@code null}.
*
*
The objects in the array are not cloned, thus there is no special
* handling for multi-dimensional arrays.
*
*
This method returns {@code null} for a {@code null} input array.
*
* @param the component type of the array
* @param array the array to shallow clone, may be {@code null}
* @return the cloned array, {@code null} if {@code null} input
*/
public static T[] clone(final T[] array) {
if (array == null) {
return null;
}
return array.clone();
}
/**
* Checks if the value is in the given array.
*
*
The method returns {@code false} if a {@code null} array is passed in.
*
* @param array the array to search through
* @param valueToFind the value to find
* @return {@code true} if the array contains the object
*/
public static boolean contains(final boolean[] array, final boolean valueToFind) {
return indexOf(array, valueToFind) != INDEX_NOT_FOUND;
}
/**
*
Checks if the value is in the given array.
*
*
The method returns {@code false} if a {@code null} array is passed in.
*
* @param array the array to search through
* @param valueToFind the value to find
* @return {@code true} if the array contains the object
*/
public static boolean contains(final byte[] array, final byte valueToFind) {
return indexOf(array, valueToFind) != INDEX_NOT_FOUND;
}
/**
*
Checks if the value is in the given array.
*
*
The method returns {@code false} if a {@code null} array is passed in.
*
* @param array the array to search through
* @param valueToFind the value to find
* @return {@code true} if the array contains the object
* @since 2.1
*/
public static boolean contains(final char[] array, final char valueToFind) {
return indexOf(array, valueToFind) != INDEX_NOT_FOUND;
}
/**
*
Checks if the value is in the given array.
*
*
The method returns {@code false} if a {@code null} array is passed in.
*
* @param array the array to search through
* @param valueToFind the value to find
* @return {@code true} if the array contains the object
*/
public static boolean contains(final double[] array, final double valueToFind) {
return indexOf(array, valueToFind) != INDEX_NOT_FOUND;
}
/**
*
Checks if a value falling within the given tolerance is in the
* given array. If the array contains a value within the inclusive range
* defined by (value - tolerance) to (value + tolerance).
*
*
The method returns {@code false} if a {@code null} array
* is passed in.
*
* @param array the array to search
* @param valueToFind the value to find
* @param tolerance the array contains the tolerance of the search
* @return true if value falling within tolerance is in array
*/
public static boolean contains(final double[] array, final double valueToFind, final double tolerance) {
return indexOf(array, valueToFind, 0, tolerance) != INDEX_NOT_FOUND;
}
/**
*
Checks if the value is in the given array.
*
*
The method returns {@code false} if a {@code null} array is passed in.
*
* @param array the array to search through
* @param valueToFind the value to find
* @return {@code true} if the array contains the object
*/
public static boolean contains(final float[] array, final float valueToFind) {
return indexOf(array, valueToFind) != INDEX_NOT_FOUND;
}
/**
*
Checks if the value is in the given array.
*
*
The method returns {@code false} if a {@code null} array is passed in.
*
* @param array the array to search through
* @param valueToFind the value to find
* @return {@code true} if the array contains the object
*/
public static boolean contains(final int[] array, final int valueToFind) {
return indexOf(array, valueToFind) != INDEX_NOT_FOUND;
}
/**
*
Checks if the value is in the given array.
*
*
The method returns {@code false} if a {@code null} array is passed in.
*
* @param array the array to search through
* @param valueToFind the value to find
* @return {@code true} if the array contains the object
*/
public static boolean contains(final long[] array, final long valueToFind) {
return indexOf(array, valueToFind) != INDEX_NOT_FOUND;
}
/**
*
Checks if the object is in the given array.
*
*
The method returns {@code false} if a {@code null} array is passed in.
*
* @param array the array to search through
* @param objectToFind the object to find
* @return {@code true} if the array contains the object
*/
public static boolean contains(final Object[] array, final Object objectToFind) {
return indexOf(array, objectToFind) != INDEX_NOT_FOUND;
}
/**
*
Checks if the value is in the given array.
*
*
The method returns {@code false} if a {@code null} array is passed in.
*
* @param array the array to search through
* @param valueToFind the value to find
* @return {@code true} if the array contains the object
*/
public static boolean contains(final short[] array, final short valueToFind) {
return indexOf(array, valueToFind) != INDEX_NOT_FOUND;
}
/**
* Returns a copy of the given array of size 1 greater than the argument.
* The last value of the array is left to the default value.
*
* @param array The array to copy, must not be {@code null}.
* @param newArrayComponentType If {@code array} is {@code null}, create a
* size 1 array of this type.
* @return A new copy of the array of size 1 greater than the input.
*/
private static Object copyArrayGrow1(final Object array, final Class> newArrayComponentType) {
if (array != null) {
final int arrayLength = Array.getLength(array);
final Object newArray = Array.newInstance(array.getClass().getComponentType(), arrayLength + 1);
System.arraycopy(array, 0, newArray, 0, arrayLength);
return newArray;
}
return Array.newInstance(newArrayComponentType, 1);
}
//-----------------------------------------------------------------------
/**
*
Returns the length of the specified array.
* This method can deal with {@code Object} arrays and with primitive arrays.
*
*
If the input array is {@code null}, {@code 0} is returned.
*
*
* ArrayUtils.getLength(null) = 0
* ArrayUtils.getLength([]) = 0
* ArrayUtils.getLength([null]) = 1
* ArrayUtils.getLength([true, false]) = 2
* ArrayUtils.getLength([1, 2, 3]) = 3
* ArrayUtils.getLength(["a", "b", "c"]) = 3
*
*
* @param array the array to retrieve the length from, may be null
* @return The length of the array, or {@code 0} if the array is {@code null}
* @throws IllegalArgumentException if the object argument is not an array.
* @since 2.1
*/
public static int getLength(final Object array) {
if (array == null) {
return 0;
}
return Array.getLength(array);
}
/**
* Get a hash code for an array handling multi-dimensional arrays correctly.
*
*
Multi-dimensional primitive arrays are also handled correctly by this method.
*
* @param array the array to get a hash code for, {@code null} returns zero
* @return a hash code for the array
*/
public static int hashCode(final Object array) {
return new HashCodeBuilder().append(array).toHashCode();
}
/**
* Finds the indices of the given value in the array.
*
*
This method returns an empty BitSet for a {@code null} input array.
*
* @param array the array to search through for the object, may be {@code null}
* @param valueToFind the value to find
* @return a BitSet of all the the indices of the value within the array,
* an empty BitSet if not found or {@code null} array input
* @since 3.10
*/
public static BitSet indexesOf(final boolean[] array, final boolean valueToFind) {
return indexesOf(array, valueToFind, 0);
}
/**
* Finds the indices of the given value in the array starting at the given index.
*
* This method returns an empty BitSet for a {@code null} input array.
*
* A negative startIndex is treated as zero. A startIndex larger than the array
* length will return an empty BitSet ({@code -1}).
*
* @param array the array to search through for the object, may be {@code null}
* @param valueToFind the value to find
* @param startIndex the index to start searching at
* @return a BitSet of all the indices of the value within the array,
* an empty BitSet if not found or {@code null}
* array input
* @since 3.10
*/
public static BitSet indexesOf(final boolean[] array, final boolean valueToFind, int startIndex) {
final BitSet bitSet = new BitSet();
if (array == null) {
return bitSet;
}
while (startIndex < array.length) {
startIndex = indexOf(array, valueToFind, startIndex);
if (startIndex == INDEX_NOT_FOUND) {
break;
}
bitSet.set(startIndex);
++startIndex;
}
return bitSet;
}
/**
* Finds the indices of the given value in the array.
*
* This method returns an empty BitSet for a {@code null} input array.
*
* @param array the array to search through for the object, may be {@code null}
* @param valueToFind the value to find
* @return a BitSet of all the indices of the value within the array,
* an empty BitSet if not found or {@code null} array input
* @since 3.10
*/
public static BitSet indexesOf(final byte[] array, final byte valueToFind) {
return indexesOf(array, valueToFind, 0);
}
/**
* Finds the indices of the given value in the array starting at the given index.
*
* This method returns an empty BitSet for a {@code null} input array.
*
* A negative startIndex is treated as zero. A startIndex larger than the array
* length will return an empty BitSet.
*
* @param array the array to search through for the object, may be {@code null}
* @param valueToFind the value to find
* @param startIndex the index to start searching at
* @return a BitSet of all the indices of the value within the array,
* an empty BitSet if not found or {@code null} array input
* @since 3.10
*/
public static BitSet indexesOf(final byte[] array, final byte valueToFind, int startIndex) {
final BitSet bitSet = new BitSet();
if (array == null) {
return bitSet;
}
while (startIndex < array.length) {
startIndex = indexOf(array, valueToFind, startIndex);
if (startIndex == INDEX_NOT_FOUND) {
break;
}
bitSet.set(startIndex);
++startIndex;
}
return bitSet;
}
/**
* Finds the indices of the given value in the array.
*
* This method returns an empty BitSet for a {@code null} input array.
*
* @param array the array to search through for the object, may be {@code null}
* @param valueToFind the value to find
* @return a BitSet of all the indices of the value within the array,
* an empty BitSet if not found or {@code null} array input
* @since 3.10
*/
public static BitSet indexesOf(final char[] array, final char valueToFind) {
return indexesOf(array, valueToFind, 0);
}
/**
* Finds the indices of the given value in the array starting at the given index.
*
* This method returns an empty BitSet for a {@code null} input array.
*
* A negative startIndex is treated as zero. A startIndex larger than the array
* length will return an empty BitSet.
*
* @param array the array to search through for the object, may be {@code null}
* @param valueToFind the value to find
* @param startIndex the index to start searching at
* @return a BitSet of all the indices of the value within the array,
* an empty BitSet if not found or {@code null} array input
* @since 3.10
*/
public static BitSet indexesOf(final char[] array, final char valueToFind, int startIndex) {
final BitSet bitSet = new BitSet();
if (array == null) {
return bitSet;
}
while (startIndex < array.length) {
startIndex = indexOf(array, valueToFind, startIndex);
if (startIndex == INDEX_NOT_FOUND) {
break;
}
bitSet.set(startIndex);
++startIndex;
}
return bitSet;
}
/**
* Finds the indices of the given value in the array.
*
* This method returns empty BitSet for a {@code null} input array.
*
* @param array the array to search through for the object, may be {@code null}
* @param valueToFind the value to find
* @return a BitSet of all the indices of the value within the array,
* an empty BitSet if not found or {@code null} array input
* @since 3.10
*/
public static BitSet indexesOf(final double[] array, final double valueToFind) {
return indexesOf(array, valueToFind, 0);
}
/**
* Finds the indices of the given value within a given tolerance in the array.
*
*
* This method will return all the indices of the value which fall between the region
* defined by valueToFind - tolerance and valueToFind + tolerance, each time between the nearest integers.
*
*
* This method returns an empty BitSet for a {@code null} input array.
*
* @param array the array to search through for the object, may be {@code null}
* @param valueToFind the value to find
* @param tolerance tolerance of the search
* @return a BitSet of all the indices of the value within the array,
* an empty BitSet if not found or {@code null} array input
* @since 3.10
*/
public static BitSet indexesOf(final double[] array, final double valueToFind, final double tolerance) {
return indexesOf(array, valueToFind, 0, tolerance);
}
/**
* Finds the indices of the given value in the array starting at the given index.
*
* This method returns an empty BitSet for a {@code null} input array.
*
* A negative startIndex is treated as zero. A startIndex larger than the array
* length will return an empty BitSet.
*
* @param array the array to search through for the object, may be {@code null}
* @param valueToFind the value to find
* @param startIndex the index to start searching at
* @return a BitSet of the indices of the value within the array,
* an empty BitSet if not found or {@code null} array input
* @since 3.10
*/
public static BitSet indexesOf(final double[] array, final double valueToFind, int startIndex) {
final BitSet bitSet = new BitSet();
if (array == null) {
return bitSet;
}
while (startIndex < array.length) {
startIndex = indexOf(array, valueToFind, startIndex);
if (startIndex == INDEX_NOT_FOUND) {
break;
}
bitSet.set(startIndex);
++startIndex;
}
return bitSet;
}
/**
* Finds the indices of the given value in the array starting at the given index.
*
*
* This method will return the indices of the values which fall between the region
* defined by valueToFind - tolerance and valueToFind + tolerance, between the nearest integers.
*
*
* This method returns an empty BitSet for a {@code null} input array.
*
* A negative startIndex is treated as zero. A startIndex larger than the array
* length will return an empty BitSet.
*
* @param array the array to search through for the object, may be {@code null}
* @param valueToFind the value to find
* @param startIndex the index to start searching at
* @param tolerance tolerance of the search
* @return a BitSet of the indices of the value within the array,
* an empty BitSet if not found or {@code null} array input
* @since 3.10
*/
public static BitSet indexesOf(final double[] array, final double valueToFind, int startIndex, final double tolerance) {
final BitSet bitSet = new BitSet();
if (array == null) {
return bitSet;
}
while (startIndex < array.length) {
startIndex = indexOf(array, valueToFind, startIndex, tolerance);
if (startIndex == INDEX_NOT_FOUND) {
break;
}
bitSet.set(startIndex);
++startIndex;
}
return bitSet;
}
/**
* Finds the indices of the given value in the array.
*
* This method returns an empty BitSet for a {@code null} input array.
*
* @param array the array to search through for the object, may be {@code null}
* @param valueToFind the value to find
* @return a BitSet of all the indices of the value within the array,
* an empty BitSet if not found or {@code null} array input
* @since 3.10
*/
public static BitSet indexesOf(final float[] array, final float valueToFind) {
return indexesOf(array, valueToFind, 0);
}
/**
* Finds the indices of the given value in the array starting at the given index.
*
* This method returns an empty BitSet for a {@code null} input array.
*
* A negative startIndex is treated as zero. A startIndex larger than the array
* length will return empty BitSet.
*
* @param array the array to search through for the object, may be {@code null}
* @param valueToFind the value to find
* @param startIndex the index to start searching at
* @return a BitSet of all the indices of the value within the array,
* an empty BitSet if not found or {@code null} array input
* @since 3.10
*/
public static BitSet indexesOf(final float[] array, final float valueToFind, int startIndex) {
final BitSet bitSet = new BitSet();
if (array == null) {
return bitSet;
}
while (startIndex < array.length) {
startIndex = indexOf(array, valueToFind, startIndex);
if (startIndex == INDEX_NOT_FOUND) {
break;
}
bitSet.set(startIndex);
++startIndex;
}
return bitSet;
}
/**
* Finds the indices of the given value in the array.
*
* This method returns an empty BitSet for a {@code null} input array.
*
* @param array the array to search through for the object, may be {@code null}
* @param valueToFind the value to find
* @return a BitSet of all the indices of the value within the array,
* an empty BitSet if not found or {@code null} array input
* @since 3.10
*/
public static BitSet indexesOf(final int[] array, final int valueToFind) {
return indexesOf(array, valueToFind, 0);
}
/**
* Finds the indices of the given value in the array starting at the given index.
*
* This method returns an empty BitSet for a {@code null} input array.
*
* A negative startIndex is treated as zero. A startIndex larger than the array
* length will return an empty BitSet.
*
* @param array the array to search through for the object, may be {@code null}
* @param valueToFind the value to find
* @param startIndex the index to start searching at
* @return a BitSet of all the indices of the value within the array,
* an empty BitSet if not found or {@code null} array input
* @since 3.10
*/
public static BitSet indexesOf(final int[] array, final int valueToFind, int startIndex) {
final BitSet bitSet = new BitSet();
if (array == null) {
return bitSet;
}
while (startIndex < array.length) {
startIndex = indexOf(array, valueToFind, startIndex);
if (startIndex == INDEX_NOT_FOUND) {
break;
}
bitSet.set(startIndex);
++startIndex;
}
return bitSet;
}
/**
* Finds the indices of the given value in the array.
*
* This method returns an empty BitSet for a {@code null} input array.
*
* @param array the array to search through for the object, may be {@code null}
* @param valueToFind the value to find
* @return a BitSet of all the indices of the value within the array,
* an empty BitSet if not found or {@code null} array input
* @since 3.10
*/
public static BitSet indexesOf(final long[] array, final long valueToFind) {
return indexesOf(array, valueToFind, 0);
}
/**
* Finds the indices of the given value in the array starting at the given index.
*
* This method returns an empty BitSet for a {@code null} input array.
*
* A negative startIndex is treated as zero. A startIndex larger than the array
* length will return an empty BitSet.
*
* @param array the array to search through for the object, may be {@code null}
* @param valueToFind the value to find
* @param startIndex the index to start searching at
* @return a BitSet of all the indices of the value within the array,
* an empty BitSet if not found or {@code null} array input
* @since 3.10
*/
public static BitSet indexesOf(final long[] array, final long valueToFind, int startIndex) {
final BitSet bitSet = new BitSet();
if (array == null) {
return bitSet;
}
while (startIndex < array.length) {
startIndex = indexOf(array, valueToFind, startIndex);
if (startIndex == INDEX_NOT_FOUND) {
break;
}
bitSet.set(startIndex);
++startIndex;
}
return bitSet;
}
/**
* Finds the indices of the given object in the array.
*
* This method returns an empty BitSet for a {@code null} input array.
*
* @param array the array to search through for the object, may be {@code null}
* @param objectToFind the object to find, may be {@code null}
* @return a BitSet of all the indices of the object within the array,
* an empty BitSet if not found or {@code null} array input
* @since 3.10
*/
public static BitSet indexesOf(final Object[] array, final Object objectToFind) {
return indexesOf(array, objectToFind, 0);
}
/**
* Finds the indices of the given object in the array starting at the given index.
*
* This method returns an empty BitSet for a {@code null} input array.
*
* A negative startIndex is treated as zero. A startIndex larger than the array
* length will return an empty BitSet.
*
* @param array the array to search through for the object, may be {@code null}
* @param objectToFind the object to find, may be {@code null}
* @param startIndex the index to start searching at
* @return a BitSet of all the indices of the object within the array starting at the index,
* an empty BitSet if not found or {@code null} array input
* @since 3.10
*/
public static BitSet indexesOf(final Object[] array, final Object objectToFind, int startIndex) {
final BitSet bitSet = new BitSet();
if (array == null) {
return bitSet;
}
while (startIndex < array.length) {
startIndex = indexOf(array, objectToFind, startIndex);
if (startIndex == INDEX_NOT_FOUND) {
break;
}
bitSet.set(startIndex);
++startIndex;
}
return bitSet;
}
/**
* Finds the indices of the given value in the array.
*
* This method returns an empty BitSet for a {@code null} input array.
*
* @param array the array to search through for the object, may be {@code null}
* @param valueToFind the value to find
* @return a BitSet of all the indices of the value within the array,
* an empty BitSet if not found or {@code null} array input
* @since 3.10
*/
public static BitSet indexesOf(final short[] array, final short valueToFind) {
return indexesOf(array, valueToFind, 0);
}
/**
* Finds the indices of the given value in the array starting at the given index.
*
* This method returns an empty BitSet for a {@code null} input array.
*
* A negative startIndex is treated as zero. A startIndex larger than the array
* length will return an empty BitSet.
*
* @param array the array to search through for the object, may be {@code null}
* @param valueToFind the value to find
* @param startIndex the index to start searching at
* @return a BitSet of all the indices of the value within the array,
* an empty BitSet if not found or {@code null} array input
* @since 3.10
*/
public static BitSet indexesOf(final short[] array, final short valueToFind, int startIndex) {
final BitSet bitSet = new BitSet();
if (array == null) {
return bitSet;
}
while (startIndex < array.length) {
startIndex = indexOf(array, valueToFind, startIndex);
if (startIndex == INDEX_NOT_FOUND) {
break;
}
bitSet.set(startIndex);
++startIndex;
}
return bitSet;
}
// boolean IndexOf
//-----------------------------------------------------------------------
/**
* Finds the index of the given value in the array.
*
*
This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array.
*
* @param array the array to search through for the object, may be {@code null}
* @param valueToFind the value to find
* @return the index of the value within the array,
* {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input
*/
public static int indexOf(final boolean[] array, final boolean valueToFind) {
return indexOf(array, valueToFind, 0);
}
/**
*
Finds the index of the given value in the array starting at the given index.
*
*
This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array.
*
*
A negative startIndex is treated as zero. A startIndex larger than the array
* length will return {@link #INDEX_NOT_FOUND} ({@code -1}).
*
* @param array the array to search through for the object, may be {@code null}
* @param valueToFind the value to find
* @param startIndex the index to start searching at
* @return the index of the value within the array,
* {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null}
* array input
*/
public static int indexOf(final boolean[] array, final boolean valueToFind, int startIndex) {
if (isEmpty(array)) {
return INDEX_NOT_FOUND;
}
if (startIndex < 0) {
startIndex = 0;
}
for (int i = startIndex; i < array.length; i++) {
if (valueToFind == array[i]) {
return i;
}
}
return INDEX_NOT_FOUND;
}
// byte IndexOf
//-----------------------------------------------------------------------
/**
*
Finds the index of the given value in the array.
*
*
This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array.
*
* @param array the array to search through for the object, may be {@code null}
* @param valueToFind the value to find
* @return the index of the value within the array,
* {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input
*/
public static int indexOf(final byte[] array, final byte valueToFind) {
return indexOf(array, valueToFind, 0);
}
/**
*
Finds the index of the given value in the array starting at the given index.
*
*
This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array.
*
*
A negative startIndex is treated as zero. A startIndex larger than the array
* length will return {@link #INDEX_NOT_FOUND} ({@code -1}).
*
* @param array the array to search through for the object, may be {@code null}
* @param valueToFind the value to find
* @param startIndex the index to start searching at
* @return the index of the value within the array,
* {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input
*/
public static int indexOf(final byte[] array, final byte valueToFind, int startIndex) {
if (array == null) {
return INDEX_NOT_FOUND;
}
if (startIndex < 0) {
startIndex = 0;
}
for (int i = startIndex; i < array.length; i++) {
if (valueToFind == array[i]) {
return i;
}
}
return INDEX_NOT_FOUND;
}
// char IndexOf
//-----------------------------------------------------------------------
/**
*
Finds the index of the given value in the array.
*
*
This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array.
*
* @param array the array to search through for the object, may be {@code null}
* @param valueToFind the value to find
* @return the index of the value within the array,
* {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input
* @since 2.1
*/
public static int indexOf(final char[] array, final char valueToFind) {
return indexOf(array, valueToFind, 0);
}
/**
*
Finds the index of the given value in the array starting at the given index.
*
*
This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array.
*
*
A negative startIndex is treated as zero. A startIndex larger than the array
* length will return {@link #INDEX_NOT_FOUND} ({@code -1}).
*
* @param array the array to search through for the object, may be {@code null}
* @param valueToFind the value to find
* @param startIndex the index to start searching at
* @return the index of the value within the array,
* {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input
* @since 2.1
*/
public static int indexOf(final char[] array, final char valueToFind, int startIndex) {
if (array == null) {
return INDEX_NOT_FOUND;
}
if (startIndex < 0) {
startIndex = 0;
}
for (int i = startIndex; i < array.length; i++) {
if (valueToFind == array[i]) {
return i;
}
}
return INDEX_NOT_FOUND;
}
// double IndexOf
//-----------------------------------------------------------------------
/**
*
Finds the index of the given value in the array.
*
*
This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array.
*
* @param array the array to search through for the object, may be {@code null}
* @param valueToFind the value to find
* @return the index of the value within the array,
* {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input
*/
public static int indexOf(final double[] array, final double valueToFind) {
return indexOf(array, valueToFind, 0);
}
/**
*
Finds the index of the given value within a given tolerance in the array.
* This method will return the index of the first value which falls between the region
* defined by valueToFind - tolerance and valueToFind + tolerance.
*
*
This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array.
*
* @param array the array to search through for the object, may be {@code null}
* @param valueToFind the value to find
* @param tolerance tolerance of the search
* @return the index of the value within the array,
* {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input
*/
public static int indexOf(final double[] array, final double valueToFind, final double tolerance) {
return indexOf(array, valueToFind, 0, tolerance);
}
/**
*
Finds the index of the given value in the array starting at the given index.
*
*
This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array.
*
*
A negative startIndex is treated as zero. A startIndex larger than the array
* length will return {@link #INDEX_NOT_FOUND} ({@code -1}).
*
* @param array the array to search through for the object, may be {@code null}
* @param valueToFind the value to find
* @param startIndex the index to start searching at
* @return the index of the value within the array,
* {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input
*/
public static int indexOf(final double[] array, final double valueToFind, int startIndex) {
if (isEmpty(array)) {
return INDEX_NOT_FOUND;
}
if (startIndex < 0) {
startIndex = 0;
}
for (int i = startIndex; i < array.length; i++) {
if (valueToFind == array[i]) {
return i;
}
}
return INDEX_NOT_FOUND;
}
/**
*
Finds the index of the given value in the array starting at the given index.
* This method will return the index of the first value which falls between the region
* defined by valueToFind - tolerance and valueToFind + tolerance.
*
*
This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array.
*
*
A negative startIndex is treated as zero. A startIndex larger than the array
* length will return {@link #INDEX_NOT_FOUND} ({@code -1}).
*
* @param array the array to search through for the object, may be {@code null}
* @param valueToFind the value to find
* @param startIndex the index to start searching at
* @param tolerance tolerance of the search
* @return the index of the value within the array,
* {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input
*/
public static int indexOf(final double[] array, final double valueToFind, int startIndex, final double tolerance) {
if (isEmpty(array)) {
return INDEX_NOT_FOUND;
}
if (startIndex < 0) {
startIndex = 0;
}
final double min = valueToFind - tolerance;
final double max = valueToFind + tolerance;
for (int i = startIndex; i < array.length; i++) {
if (array[i] >= min && array[i] <= max) {
return i;
}
}
return INDEX_NOT_FOUND;
}
// float IndexOf
//-----------------------------------------------------------------------
/**
*
Finds the index of the given value in the array.
*
*
This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array.
*
* @param array the array to search through for the object, may be {@code null}
* @param valueToFind the value to find
* @return the index of the value within the array,
* {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input
*/
public static int indexOf(final float[] array, final float valueToFind) {
return indexOf(array, valueToFind, 0);
}
/**
*
Finds the index of the given value in the array starting at the given index.
*
*
This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array.
*
*
A negative startIndex is treated as zero. A startIndex larger than the array
* length will return {@link #INDEX_NOT_FOUND} ({@code -1}).
*
* @param array the array to search through for the object, may be {@code null}
* @param valueToFind the value to find
* @param startIndex the index to start searching at
* @return the index of the value within the array,
* {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input
*/
public static int indexOf(final float[] array, final float valueToFind, int startIndex) {
if (isEmpty(array)) {
return INDEX_NOT_FOUND;
}
if (startIndex < 0) {
startIndex = 0;
}
for (int i = startIndex; i < array.length; i++) {
if (valueToFind == array[i]) {
return i;
}
}
return INDEX_NOT_FOUND;
}
// int IndexOf
//-----------------------------------------------------------------------
/**
*
Finds the index of the given value in the array.
*
*
This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array.
*
* @param array the array to search through for the object, may be {@code null}
* @param valueToFind the value to find
* @return the index of the value within the array,
* {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input
*/
public static int indexOf(final int[] array, final int valueToFind) {
return indexOf(array, valueToFind, 0);
}
/**
*
Finds the index of the given value in the array starting at the given index.
*
*
This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array.
*
*
A negative startIndex is treated as zero. A startIndex larger than the array
* length will return {@link #INDEX_NOT_FOUND} ({@code -1}).
*
* @param array the array to search through for the object, may be {@code null}
* @param valueToFind the value to find
* @param startIndex the index to start searching at
* @return the index of the value within the array,
* {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input
*/
public static int indexOf(final int[] array, final int valueToFind, int startIndex) {
if (array == null) {
return INDEX_NOT_FOUND;
}
if (startIndex < 0) {
startIndex = 0;
}
for (int i = startIndex; i < array.length; i++) {
if (valueToFind == array[i]) {
return i;
}
}
return INDEX_NOT_FOUND;
}
// long IndexOf
//-----------------------------------------------------------------------
/**
*
Finds the index of the given value in the array.
*
*
This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array.
*
* @param array the array to search through for the object, may be {@code null}
* @param valueToFind the value to find
* @return the index of the value within the array,
* {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input
*/
public static int indexOf(final long[] array, final long valueToFind) {
return indexOf(array, valueToFind, 0);
}
/**
*
Finds the index of the given value in the array starting at the given index.
*
*
This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array.
*
*
A negative startIndex is treated as zero. A startIndex larger than the array
* length will return {@link #INDEX_NOT_FOUND} ({@code -1}).
*
* @param array the array to search through for the object, may be {@code null}
* @param valueToFind the value to find
* @param startIndex the index to start searching at
* @return the index of the value within the array,
* {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input
*/
public static int indexOf(final long[] array, final long valueToFind, int startIndex) {
if (array == null) {
return INDEX_NOT_FOUND;
}
if (startIndex < 0) {
startIndex = 0;
}
for (int i = startIndex; i < array.length; i++) {
if (valueToFind == array[i]) {
return i;
}
}
return INDEX_NOT_FOUND;
}
// Object IndexOf
//-----------------------------------------------------------------------
/**
*
Finds the index of the given object in the array.
*
*
This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array.
*
* @param array the array to search through for the object, may be {@code null}
* @param objectToFind the object to find, may be {@code null}
* @return the index of the object within the array,
* {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input
*/
public static int indexOf(final Object[] array, final Object objectToFind) {
return indexOf(array, objectToFind, 0);
}
/**
*
Finds the index of the given object in the array starting at the given index.
*
*
This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array.
*
*
A negative startIndex is treated as zero. A startIndex larger than the array
* length will return {@link #INDEX_NOT_FOUND} ({@code -1}).
*
* @param array the array to search through for the object, may be {@code null}
* @param objectToFind the object to find, may be {@code null}
* @param startIndex the index to start searching at
* @return the index of the object within the array starting at the index,
* {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input
*/
public static int indexOf(final Object[] array, final Object objectToFind, int startIndex) {
if (array == null) {
return INDEX_NOT_FOUND;
}
if (startIndex < 0) {
startIndex = 0;
}
if (objectToFind == null) {
for (int i = startIndex; i < array.length; i++) {
if (array[i] == null) {
return i;
}
}
} else {
for (int i = startIndex; i < array.length; i++) {
if (objectToFind.equals(array[i])) {
return i;
}
}
}
return INDEX_NOT_FOUND;
}
// short IndexOf
//-----------------------------------------------------------------------
/**
*
Finds the index of the given value in the array.
*
*
This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array.
*
* @param array the array to search through for the object, may be {@code null}
* @param valueToFind the value to find
* @return the index of the value within the array,
* {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input
*/
public static int indexOf(final short[] array, final short valueToFind) {
return indexOf(array, valueToFind, 0);
}
/**
*
Finds the index of the given value in the array starting at the given index.
*
*
This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array.
*
*
A negative startIndex is treated as zero. A startIndex larger than the array
* length will return {@link #INDEX_NOT_FOUND} ({@code -1}).
*
* @param array the array to search through for the object, may be {@code null}
* @param valueToFind the value to find
* @param startIndex the index to start searching at
* @return the index of the value within the array,
* {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input
*/
public static int indexOf(final short[] array, final short valueToFind, int startIndex) {
if (array == null) {
return INDEX_NOT_FOUND;
}
if (startIndex < 0) {
startIndex = 0;
}
for (int i = startIndex; i < array.length; i++) {
if (valueToFind == array[i]) {
return i;
}
}
return INDEX_NOT_FOUND;
}
/**
*
Inserts elements into an array at the given index (starting from zero).
*
* When an array is returned, it is always a new array.
*
*
* ArrayUtils.insert(index, null, null) = null
* ArrayUtils.insert(index, array, null) = cloned copy of 'array'
* ArrayUtils.insert(index, null, values) = null
*
*
* @param index the position within {@code array} to insert the new values
* @param array the array to insert the values into, may be {@code null}
* @param values the new values to insert, may be {@code null}
* @return The new array.
* @throws IndexOutOfBoundsException if {@code array} is provided
* and either {@code index < 0} or {@code index > array.length}
* @since 3.6
*/
public static boolean[] insert(final int index, final boolean[] array, final boolean... values) {
if (array == null) {
return null;
}
if (ArrayUtils.isEmpty(values)) {
return clone(array);
}
if (index < 0 || index > array.length) {
throw new IndexOutOfBoundsException("Index: " + index + ", Length: " + array.length);
}
final boolean[] result = new boolean[array.length + values.length];
System.arraycopy(values, 0, result, index, values.length);
if (index > 0) {
System.arraycopy(array, 0, result, 0, index);
}
if (index < array.length) {
System.arraycopy(array, index, result, index + values.length, array.length - index);
}
return result;
}
/**
* Inserts elements into an array at the given index (starting from zero).
*
* When an array is returned, it is always a new array.
*
*
* ArrayUtils.insert(index, null, null) = null
* ArrayUtils.insert(index, array, null) = cloned copy of 'array'
* ArrayUtils.insert(index, null, values) = null
*
*
* @param index the position within {@code array} to insert the new values
* @param array the array to insert the values into, may be {@code null}
* @param values the new values to insert, may be {@code null}
* @return The new array.
* @throws IndexOutOfBoundsException if {@code array} is provided
* and either {@code index < 0} or {@code index > array.length}
* @since 3.6
*/
public static byte[] insert(final int index, final byte[] array, final byte... values) {
if (array == null) {
return null;
}
if (ArrayUtils.isEmpty(values)) {
return clone(array);
}
if (index < 0 || index > array.length) {
throw new IndexOutOfBoundsException("Index: " + index + ", Length: " + array.length);
}
final byte[] result = new byte[array.length + values.length];
System.arraycopy(values, 0, result, index, values.length);
if (index > 0) {
System.arraycopy(array, 0, result, 0, index);
}
if (index < array.length) {
System.arraycopy(array, index, result, index + values.length, array.length - index);
}
return result;
}
/**
* Inserts elements into an array at the given index (starting from zero).
*
* When an array is returned, it is always a new array.
*
*
* ArrayUtils.insert(index, null, null) = null
* ArrayUtils.insert(index, array, null) = cloned copy of 'array'
* ArrayUtils.insert(index, null, values) = null
*
*
* @param index the position within {@code array} to insert the new values
* @param array the array to insert the values into, may be {@code null}
* @param values the new values to insert, may be {@code null}
* @return The new array.
* @throws IndexOutOfBoundsException if {@code array} is provided
* and either {@code index < 0} or {@code index > array.length}
* @since 3.6
*/
public static char[] insert(final int index, final char[] array, final char... values) {
if (array == null) {
return null;
}
if (ArrayUtils.isEmpty(values)) {
return clone(array);
}
if (index < 0 || index > array.length) {
throw new IndexOutOfBoundsException("Index: " + index + ", Length: " + array.length);
}
final char[] result = new char[array.length + values.length];
System.arraycopy(values, 0, result, index, values.length);
if (index > 0) {
System.arraycopy(array, 0, result, 0, index);
}
if (index < array.length) {
System.arraycopy(array, index, result, index + values.length, array.length - index);
}
return result;
}
/**
* Inserts elements into an array at the given index (starting from zero).
*
* When an array is returned, it is always a new array.
*
*
* ArrayUtils.insert(index, null, null) = null
* ArrayUtils.insert(index, array, null) = cloned copy of 'array'
* ArrayUtils.insert(index, null, values) = null
*
*
* @param index the position within {@code array} to insert the new values
* @param array the array to insert the values into, may be {@code null}
* @param values the new values to insert, may be {@code null}
* @return The new array.
* @throws IndexOutOfBoundsException if {@code array} is provided
* and either {@code index < 0} or {@code index > array.length}
* @since 3.6
*/
public static double[] insert(final int index, final double[] array, final double... values) {
if (array == null) {
return null;
}
if (ArrayUtils.isEmpty(values)) {
return clone(array);
}
if (index < 0 || index > array.length) {
throw new IndexOutOfBoundsException("Index: " + index + ", Length: " + array.length);
}
final double[] result = new double[array.length + values.length];
System.arraycopy(values, 0, result, index, values.length);
if (index > 0) {
System.arraycopy(array, 0, result, 0, index);
}
if (index < array.length) {
System.arraycopy(array, index, result, index + values.length, array.length - index);
}
return result;
}
/**
* Inserts elements into an array at the given index (starting from zero).
*
* When an array is returned, it is always a new array.
*
*
* ArrayUtils.insert(index, null, null) = null
* ArrayUtils.insert(index, array, null) = cloned copy of 'array'
* ArrayUtils.insert(index, null, values) = null
*
*
* @param index the position within {@code array} to insert the new values
* @param array the array to insert the values into, may be {@code null}
* @param values the new values to insert, may be {@code null}
* @return The new array.
* @throws IndexOutOfBoundsException if {@code array} is provided
* and either {@code index < 0} or {@code index > array.length}
* @since 3.6
*/
public static float[] insert(final int index, final float[] array, final float... values) {
if (array == null) {
return null;
}
if (ArrayUtils.isEmpty(values)) {
return clone(array);
}
if (index < 0 || index > array.length) {
throw new IndexOutOfBoundsException("Index: " + index + ", Length: " + array.length);
}
final float[] result = new float[array.length + values.length];
System.arraycopy(values, 0, result, index, values.length);
if (index > 0) {
System.arraycopy(array, 0, result, 0, index);
}
if (index < array.length) {
System.arraycopy(array, index, result, index + values.length, array.length - index);
}
return result;
}
/**
* Inserts elements into an array at the given index (starting from zero).
*
* When an array is returned, it is always a new array.
*
*
* ArrayUtils.insert(index, null, null) = null
* ArrayUtils.insert(index, array, null) = cloned copy of 'array'
* ArrayUtils.insert(index, null, values) = null
*
*
* @param index the position within {@code array} to insert the new values
* @param array the array to insert the values into, may be {@code null}
* @param values the new values to insert, may be {@code null}
* @return The new array.
* @throws IndexOutOfBoundsException if {@code array} is provided
* and either {@code index < 0} or {@code index > array.length}
* @since 3.6
*/
public static int[] insert(final int index, final int[] array, final int... values) {
if (array == null) {
return null;
}
if (ArrayUtils.isEmpty(values)) {
return clone(array);
}
if (index < 0 || index > array.length) {
throw new IndexOutOfBoundsException("Index: " + index + ", Length: " + array.length);
}
final int[] result = new int[array.length + values.length];
System.arraycopy(values, 0, result, index, values.length);
if (index > 0) {
System.arraycopy(array, 0, result, 0, index);
}
if (index < array.length) {
System.arraycopy(array, index, result, index + values.length, array.length - index);
}
return result;
}
/**
* Inserts elements into an array at the given index (starting from zero).
*
* When an array is returned, it is always a new array.
*
*
* ArrayUtils.insert(index, null, null) = null
* ArrayUtils.insert(index, array, null) = cloned copy of 'array'
* ArrayUtils.insert(index, null, values) = null
*
*
* @param index the position within {@code array} to insert the new values
* @param array the array to insert the values into, may be {@code null}
* @param values the new values to insert, may be {@code null}
* @return The new array.
* @throws IndexOutOfBoundsException if {@code array} is provided
* and either {@code index < 0} or {@code index > array.length}
* @since 3.6
*/
public static long[] insert(final int index, final long[] array, final long... values) {
if (array == null) {
return null;
}
if (ArrayUtils.isEmpty(values)) {
return clone(array);
}
if (index < 0 || index > array.length) {
throw new IndexOutOfBoundsException("Index: " + index + ", Length: " + array.length);
}
final long[] result = new long[array.length + values.length];
System.arraycopy(values, 0, result, index, values.length);
if (index > 0) {
System.arraycopy(array, 0, result, 0, index);
}
if (index < array.length) {
System.arraycopy(array, index, result, index + values.length, array.length - index);
}
return result;
}
/**
* Inserts elements into an array at the given index (starting from zero).
*
* When an array is returned, it is always a new array.
*
*
* ArrayUtils.insert(index, null, null) = null
* ArrayUtils.insert(index, array, null) = cloned copy of 'array'
* ArrayUtils.insert(index, null, values) = null
*
*
* @param index the position within {@code array} to insert the new values
* @param array the array to insert the values into, may be {@code null}
* @param values the new values to insert, may be {@code null}
* @return The new array.
* @throws IndexOutOfBoundsException if {@code array} is provided
* and either {@code index < 0} or {@code index > array.length}
* @since 3.6
*/
public static short[] insert(final int index, final short[] array, final short... values) {
if (array == null) {
return null;
}
if (ArrayUtils.isEmpty(values)) {
return clone(array);
}
if (index < 0 || index > array.length) {
throw new IndexOutOfBoundsException("Index: " + index + ", Length: " + array.length);
}
final short[] result = new short[array.length + values.length];
System.arraycopy(values, 0, result, index, values.length);
if (index > 0) {
System.arraycopy(array, 0, result, 0, index);
}
if (index < array.length) {
System.arraycopy(array, index, result, index + values.length, array.length - index);
}
return result;
}
/**
* Inserts elements into an array at the given index (starting from zero).
*
* When an array is returned, it is always a new array.
*
*
* ArrayUtils.insert(index, null, null) = null
* ArrayUtils.insert(index, array, null) = cloned copy of 'array'
* ArrayUtils.insert(index, null, values) = null
*
*
* @param The type of elements in {@code array} and {@code values}
* @param index the position within {@code array} to insert the new values
* @param array the array to insert the values into, may be {@code null}
* @param values the new values to insert, may be {@code null}
* @return The new array.
* @throws IndexOutOfBoundsException if {@code array} is provided
* and either {@code index < 0} or {@code index > array.length}
* @since 3.6
*/
@SafeVarargs
public static T[] insert(final int index, final T[] array, final T... values) {
/*
* Note on use of @SafeVarargs:
*
* By returning null when 'array' is null, we avoid returning the vararg
* array to the caller. We also avoid relying on the type of the vararg
* array, by inspecting the component type of 'array'.
*/
if (array == null) {
return null;
}
if (ArrayUtils.isEmpty(values)) {
return clone(array);
}
if (index < 0 || index > array.length) {
throw new IndexOutOfBoundsException("Index: " + index + ", Length: " + array.length);
}
final Class> type = array.getClass().getComponentType();
@SuppressWarnings("unchecked") // OK, because array and values are of type T
final
T[] result = (T[]) Array.newInstance(type, array.length + values.length);
System.arraycopy(values, 0, result, index, values.length);
if (index > 0) {
System.arraycopy(array, 0, result, 0, index);
}
if (index < array.length) {
System.arraycopy(array, index, result, index + values.length, array.length - index);
}
return result;
}
/**
* Returns whether a given array can safely be accessed at the given index.
* @param the component type of the array
* @param array the array to inspect, may be null
* @param index the index of the array to be inspected
* @return Whether the given index is safely-accessible in the given array
* @since 3.8
*/
public static boolean isArrayIndexValid(final T[] array, final int index) {
if (getLength(array) == 0 || array.length <= index) {
return false;
}
return index >= 0;
}
/**
* Checks if an array of primitive booleans is empty or {@code null}.
*
* @param array the array to test
* @return {@code true} if the array is empty or {@code null}
* @since 2.1
*/
public static boolean isEmpty(final boolean[] array) {
return getLength(array) == 0;
}
// IndexOf search
// ----------------------------------------------------------------------
/**
*
Checks if an array of primitive bytes is empty or {@code null}.
*
* @param array the array to test
* @return {@code true} if the array is empty or {@code null}
* @since 2.1
*/
public static boolean isEmpty(final byte[] array) {
return getLength(array) == 0;
}
/**
*
Checks if an array of primitive chars is empty or {@code null}.
*
* @param array the array to test
* @return {@code true} if the array is empty or {@code null}
* @since 2.1
*/
public static boolean isEmpty(final char[] array) {
return getLength(array) == 0;
}
/**
*
Checks if an array of primitive doubles is empty or {@code null}.
*
* @param array the array to test
* @return {@code true} if the array is empty or {@code null}
* @since 2.1
*/
public static boolean isEmpty(final double[] array) {
return getLength(array) == 0;
}
/**
*
Checks if an array of primitive floats is empty or {@code null}.
*
* @param array the array to test
* @return {@code true} if the array is empty or {@code null}
* @since 2.1
*/
public static boolean isEmpty(final float[] array) {
return getLength(array) == 0;
}
/**
*
Checks if an array of primitive ints is empty or {@code null}.
*
* @param array the array to test
* @return {@code true} if the array is empty or {@code null}
* @since 2.1
*/
public static boolean isEmpty(final int[] array) {
return getLength(array) == 0;
}
/**
*
Checks if an array of primitive longs is empty or {@code null}.
*
* @param array the array to test
* @return {@code true} if the array is empty or {@code null}
* @since 2.1
*/
public static boolean isEmpty(final long[] array) {
return getLength(array) == 0;
}
// ----------------------------------------------------------------------
/**
*
Checks if an array of Objects is empty or {@code null}.
*
* @param array the array to test
* @return {@code true} if the array is empty or {@code null}
* @since 2.1
*/
public static boolean isEmpty(final Object[] array) {
return getLength(array) == 0;
}
/**
*
Checks if an array of primitive shorts is empty or {@code null}.
*
* @param array the array to test
* @return {@code true} if the array is empty or {@code null}
* @since 2.1
*/
public static boolean isEmpty(final short[] array) {
return getLength(array) == 0;
}
/**
*
Compares two arrays, using equals(), handling multi-dimensional arrays
* correctly.
*
*
Multi-dimensional primitive arrays are also handled correctly by this method.
*
* @param array1 the left hand array to compare, may be {@code null}
* @param array2 the right hand array to compare, may be {@code null}
* @return {@code true} if the arrays are equal
* @deprecated this method has been replaced by {@code java.util.Objects.deepEquals(Object, Object)} and will be
* removed from future releases.
*/
@Deprecated
public static boolean isEquals(final Object array1, final Object array2) {
return new EqualsBuilder().append(array1, array2).isEquals();
}
/**
*
Checks if an array of primitive booleans is not empty and not {@code null}.
*
* @param array the array to test
* @return {@code true} if the array is not empty and not {@code null}
* @since 2.5
*/
public static boolean isNotEmpty(final boolean[] array) {
return !isEmpty(array);
}
/**
*
Checks if an array of primitive bytes is not empty and not {@code null}.
*
* @param array the array to test
* @return {@code true} if the array is not empty and not {@code null}
* @since 2.5
*/
public static boolean isNotEmpty(final byte[] array) {
return !isEmpty(array);
}
/**
*
Checks if an array of primitive chars is not empty and not {@code null}.
*
* @param array the array to test
* @return {@code true} if the array is not empty and not {@code null}
* @since 2.5
*/
public static boolean isNotEmpty(final char[] array) {
return !isEmpty(array);
}
/**
*
Checks if an array of primitive doubles is not empty and not {@code null}.
*
* @param array the array to test
* @return {@code true} if the array is not empty and not {@code null}
* @since 2.5
*/
public static boolean isNotEmpty(final double[] array) {
return !isEmpty(array);
}
/**
*
Checks if an array of primitive floats is not empty and not {@code null}.
*
* @param array the array to test
* @return {@code true} if the array is not empty and not {@code null}
* @since 2.5
*/
public static boolean isNotEmpty(final float[] array) {
return !isEmpty(array);
}
/**
*
Checks if an array of primitive ints is not empty and not {@code null}.
*
* @param array the array to test
* @return {@code true} if the array is not empty and not {@code null}
* @since 2.5
*/
public static boolean isNotEmpty(final int[] array) {
return !isEmpty(array);
}
/**
*
Checks if an array of primitive longs is not empty and not {@code null}.
*
* @param array the array to test
* @return {@code true} if the array is not empty and not {@code null}
* @since 2.5
*/
public static boolean isNotEmpty(final long[] array) {
return !isEmpty(array);
}
/**
*
Checks if an array of primitive shorts is not empty and not {@code null}.
*
* @param array the array to test
* @return {@code true} if the array is not empty and not {@code null}
* @since 2.5
*/
public static boolean isNotEmpty(final short[] array) {
return !isEmpty(array);
}
// ----------------------------------------------------------------------
/**
*
Checks if an array of Objects is not empty and not {@code null}.
*
* @param the component type of the array
* @param array the array to test
* @return {@code true} if the array is not empty and not {@code null}
* @since 2.5
*/
public static boolean isNotEmpty(final T[] array) {
return !isEmpty(array);
}
/**
* Checks whether two arrays are the same length, treating
* {@code null} arrays as length {@code 0}.
*
* @param array1 the first array, may be {@code null}
* @param array2 the second array, may be {@code null}
* @return {@code true} if length of arrays matches, treating
* {@code null} as an empty array
*/
public static boolean isSameLength(final boolean[] array1, final boolean[] array2) {
return getLength(array1) == getLength(array2);
}
/**
*
Checks whether two arrays are the same length, treating
* {@code null} arrays as length {@code 0}.
*
* @param array1 the first array, may be {@code null}
* @param array2 the second array, may be {@code null}
* @return {@code true} if length of arrays matches, treating
* {@code null} as an empty array
*/
public static boolean isSameLength(final byte[] array1, final byte[] array2) {
return getLength(array1) == getLength(array2);
}
/**
*
Checks whether two arrays are the same length, treating
* {@code null} arrays as length {@code 0}.
*
* @param array1 the first array, may be {@code null}
* @param array2 the second array, may be {@code null}
* @return {@code true} if length of arrays matches, treating
* {@code null} as an empty array
*/
public static boolean isSameLength(final char[] array1, final char[] array2) {
return getLength(array1) == getLength(array2);
}
/**
*
Checks whether two arrays are the same length, treating
* {@code null} arrays as length {@code 0}.
*
* @param array1 the first array, may be {@code null}
* @param array2 the second array, may be {@code null}
* @return {@code true} if length of arrays matches, treating
* {@code null} as an empty array
*/
public static boolean isSameLength(final double[] array1, final double[] array2) {
return getLength(array1) == getLength(array2);
}
/**
*
Checks whether two arrays are the same length, treating
* {@code null} arrays as length {@code 0}.
*
* @param array1 the first array, may be {@code null}
* @param array2 the second array, may be {@code null}
* @return {@code true} if length of arrays matches, treating
* {@code null} as an empty array
*/
public static boolean isSameLength(final float[] array1, final float[] array2) {
return getLength(array1) == getLength(array2);
}
/**
*
Checks whether two arrays are the same length, treating
* {@code null} arrays as length {@code 0}.
*
* @param array1 the first array, may be {@code null}
* @param array2 the second array, may be {@code null}
* @return {@code true} if length of arrays matches, treating
* {@code null} as an empty array
*/
public static boolean isSameLength(final int[] array1, final int[] array2) {
return getLength(array1) == getLength(array2);
}
/**
*
Checks whether two arrays are the same length, treating
* {@code null} arrays as length {@code 0}.
*
* @param array1 the first array, may be {@code null}
* @param array2 the second array, may be {@code null}
* @return {@code true} if length of arrays matches, treating
* {@code null} as an empty array
*/
public static boolean isSameLength(final long[] array1, final long[] array2) {
return getLength(array1) == getLength(array2);
}
// Is same length
//-----------------------------------------------------------------------
/**
*
Checks whether two arrays are the same length, treating
* {@code null} arrays as length {@code 0}.
*
*
Any multi-dimensional aspects of the arrays are ignored.
*
* @param array1 the first array, may be {@code null}
* @param array2 the second array, may be {@code null}
* @return {@code true} if length of arrays matches, treating
* {@code null} as an empty array
*/
public static boolean isSameLength(final Object[] array1, final Object[] array2) {
return getLength(array1) == getLength(array2);
}
/**
*
Checks whether two arrays are the same length, treating
* {@code null} arrays as length {@code 0}.
*
* @param array1 the first array, may be {@code null}
* @param array2 the second array, may be {@code null}
* @return {@code true} if length of arrays matches, treating
* {@code null} as an empty array
*/
public static boolean isSameLength(final short[] array1, final short[] array2) {
return getLength(array1) == getLength(array2);
}
/**
*
Checks whether two arrays are the same type taking into account
* multi-dimensional arrays.
*
* @param array1 the first array, must not be {@code null}
* @param array2 the second array, must not be {@code null}
* @return {@code true} if type of arrays matches
* @throws IllegalArgumentException if either array is {@code null}
*/
public static boolean isSameType(final Object array1, final Object array2) {
if (array1 == null || array2 == null) {
throw new IllegalArgumentException("The Array must not be null");
}
return array1.getClass().getName().equals(array2.getClass().getName());
}
/**
*
This method checks whether the provided array is sorted according to natural ordering
* ({@code false} before {@code true}).
*
* @param array the array to check
* @return whether the array is sorted according to natural ordering
* @since 3.4
*/
public static boolean isSorted(final boolean[] array) {
if (array == null || array.length < 2) {
return true;
}
boolean previous = array[0];
final int n = array.length;
for (int i = 1; i < n; i++) {
final boolean current = array[i];
if (BooleanUtils.compare(previous, current) > 0) {
return false;
}
previous = current;
}
return true;
}
/**
*
This method checks whether the provided array is sorted according to natural ordering.
*
* @param array the array to check
* @return whether the array is sorted according to natural ordering
* @since 3.4
*/
public static boolean isSorted(final byte[] array) {
if (array == null || array.length < 2) {
return true;
}
byte previous = array[0];
final int n = array.length;
for (int i = 1; i < n; i++) {
final byte current = array[i];
if (NumberUtils.compare(previous, current) > 0) {
return false;
}
previous = current;
}
return true;
}
/**
*
This method checks whether the provided array is sorted according to natural ordering.
*
* @param array the array to check
* @return whether the array is sorted according to natural ordering
* @since 3.4
*/
public static boolean isSorted(final char[] array) {
if (array == null || array.length < 2) {
return true;
}
char previous = array[0];
final int n = array.length;
for (int i = 1; i < n; i++) {
final char current = array[i];
if (CharUtils.compare(previous, current) > 0) {
return false;
}
previous = current;
}
return true;
}
/**
*
This method checks whether the provided array is sorted according to natural ordering.
*
* @param array the array to check
* @return whether the array is sorted according to natural ordering
* @since 3.4
*/
public static boolean isSorted(final double[] array) {
if (array == null || array.length < 2) {
return true;
}
double previous = array[0];
final int n = array.length;
for (int i = 1; i < n; i++) {
final double current = array[i];
if (Double.compare(previous, current) > 0) {
return false;
}
previous = current;
}
return true;
}
/**
*
This method checks whether the provided array is sorted according to natural ordering.
*
* @param array the array to check
* @return whether the array is sorted according to natural ordering
* @since 3.4
*/
public static boolean isSorted(final float[] array) {
if (array == null || array.length < 2) {
return true;
}
float previous = array[0];
final int n = array.length;
for (int i = 1; i < n; i++) {
final float current = array[i];
if (Float.compare(previous, current) > 0) {
return false;
}
previous = current;
}
return true;
}
/**
*
This method checks whether the provided array is sorted according to natural ordering.
*
* @param array the array to check
* @return whether the array is sorted according to natural ordering
* @since 3.4
*/
public static boolean isSorted(final int[] array) {
if (array == null || array.length < 2) {
return true;
}
int previous = array[0];
final int n = array.length;
for (int i = 1; i < n; i++) {
final int current = array[i];
if (NumberUtils.compare(previous, current) > 0) {
return false;
}
previous = current;
}
return true;
}
/**
*
This method checks whether the provided array is sorted according to natural ordering.
*
* @param array the array to check
* @return whether the array is sorted according to natural ordering
* @since 3.4
*/
public static boolean isSorted(final long[] array) {
if (array == null || array.length < 2) {
return true;
}
long previous = array[0];
final int n = array.length;
for (int i = 1; i < n; i++) {
final long current = array[i];
if (NumberUtils.compare(previous, current) > 0) {
return false;
}
previous = current;
}
return true;
}
/**
*
This method checks whether the provided array is sorted according to natural ordering.
*
* @param array the array to check
* @return whether the array is sorted according to natural ordering
* @since 3.4
*/
public static boolean isSorted(final short[] array) {
if (array == null || array.length < 2) {
return true;
}
short previous = array[0];
final int n = array.length;
for (int i = 1; i < n; i++) {
final short current = array[i];
if (NumberUtils.compare(previous, current) > 0) {
return false;
}
previous = current;
}
return true;
}
/**
*
This method checks whether the provided array is sorted according to the class's
* {@code compareTo} method.
*
* @param array the array to check
* @param the datatype of the array to check, it must implement {@code Comparable}
* @return whether the array is sorted
* @since 3.4
*/
public static > boolean isSorted(final T[] array) {
return isSorted(array, (o1, o2) -> o1.compareTo(o2));
}
/**
* This method checks whether the provided array is sorted according to the provided {@code Comparator}.
*
* @param array the array to check
* @param comparator the {@code Comparator} to compare over
* @param the datatype of the array
* @return whether the array is sorted
* @since 3.4
*/
public static boolean isSorted(final T[] array, final Comparator comparator) {
if (comparator == null) {
throw new IllegalArgumentException("Comparator should not be null.");
}
if (array == null || array.length < 2) {
return true;
}
T previous = array[0];
final int n = array.length;
for (int i = 1; i < n; i++) {
final T current = array[i];
if (comparator.compare(previous, current) > 0) {
return false;
}
previous = current;
}
return true;
}
/**
* Finds the last index of the given value within the array.
*
*
This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) if
* {@code null} array input.
*
* @param array the array to traverse backwards looking for the object, may be {@code null}
* @param valueToFind the object to find
* @return the last index of the value within the array,
* {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input
*/
public static int lastIndexOf(final boolean[] array, final boolean valueToFind) {
return lastIndexOf(array, valueToFind, Integer.MAX_VALUE);
}
/**
*
Finds the last index of the given value in the array starting at the given index.
*
*
This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array.
*
*
A negative startIndex will return {@link #INDEX_NOT_FOUND} ({@code -1}). A startIndex larger than
* the array length will search from the end of the array.
*
* @param array the array to traverse for looking for the object, may be {@code null}
* @param valueToFind the value to find
* @param startIndex the start index to traverse backwards from
* @return the last index of the value within the array,
* {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input
*/
public static int lastIndexOf(final boolean[] array, final boolean valueToFind, int startIndex) {
if (isEmpty(array)) {
return INDEX_NOT_FOUND;
}
if (startIndex < 0) {
return INDEX_NOT_FOUND;
} else if (startIndex >= array.length) {
startIndex = array.length - 1;
}
for (int i = startIndex; i >= 0; i--) {
if (valueToFind == array[i]) {
return i;
}
}
return INDEX_NOT_FOUND;
}
/**
*
Finds the last index of the given value within the array.
*
*
This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array.
*
* @param array the array to traverse backwards looking for the object, may be {@code null}
* @param valueToFind the object to find
* @return the last index of the value within the array,
* {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input
*/
public static int lastIndexOf(final byte[] array, final byte valueToFind) {
return lastIndexOf(array, valueToFind, Integer.MAX_VALUE);
}
/**
*
Finds the last index of the given value in the array starting at the given index.
*
*
This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array.
*
*
A negative startIndex will return {@link #INDEX_NOT_FOUND} ({@code -1}). A startIndex larger than the
* array length will search from the end of the array.
*
* @param array the array to traverse for looking for the object, may be {@code null}
* @param valueToFind the value to find
* @param startIndex the start index to traverse backwards from
* @return the last index of the value within the array,
* {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input
*/
public static int lastIndexOf(final byte[] array, final byte valueToFind, int startIndex) {
if (array == null) {
return INDEX_NOT_FOUND;
}
if (startIndex < 0) {
return INDEX_NOT_FOUND;
} else if (startIndex >= array.length) {
startIndex = array.length - 1;
}
for (int i = startIndex; i >= 0; i--) {
if (valueToFind == array[i]) {
return i;
}
}
return INDEX_NOT_FOUND;
}
/**
*
Finds the last index of the given value within the array.
*
*
This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array.
*
* @param array the array to traverse backwards looking for the object, may be {@code null}
* @param valueToFind the object to find
* @return the last index of the value within the array,
* {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input
* @since 2.1
*/
public static int lastIndexOf(final char[] array, final char valueToFind) {
return lastIndexOf(array, valueToFind, Integer.MAX_VALUE);
}
/**
*
Finds the last index of the given value in the array starting at the given index.
*
*
This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array.
*
*
A negative startIndex will return {@link #INDEX_NOT_FOUND} ({@code -1}). A startIndex larger than the
* array length will search from the end of the array.
*
* @param array the array to traverse for looking for the object, may be {@code null}
* @param valueToFind the value to find
* @param startIndex the start index to traverse backwards from
* @return the last index of the value within the array,
* {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input
* @since 2.1
*/
public static int lastIndexOf(final char[] array, final char valueToFind, int startIndex) {
if (array == null) {
return INDEX_NOT_FOUND;
}
if (startIndex < 0) {
return INDEX_NOT_FOUND;
} else if (startIndex >= array.length) {
startIndex = array.length - 1;
}
for (int i = startIndex; i >= 0; i--) {
if (valueToFind == array[i]) {
return i;
}
}
return INDEX_NOT_FOUND;
}
/**
*
Finds the last index of the given value within the array.
*
*
This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array.
*
* @param array the array to traverse backwards looking for the object, may be {@code null}
* @param valueToFind the object to find
* @return the last index of the value within the array,
* {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input
*/
public static int lastIndexOf(final double[] array, final double valueToFind) {
return lastIndexOf(array, valueToFind, Integer.MAX_VALUE);
}
/**
*
Finds the last index of the given value within a given tolerance in the array.
* This method will return the index of the last value which falls between the region
* defined by valueToFind - tolerance and valueToFind + tolerance.
*
*
This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array.
*
* @param array the array to search through for the object, may be {@code null}
* @param valueToFind the value to find
* @param tolerance tolerance of the search
* @return the index of the value within the array,
* {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input
*/
public static int lastIndexOf(final double[] array, final double valueToFind, final double tolerance) {
return lastIndexOf(array, valueToFind, Integer.MAX_VALUE, tolerance);
}
/**
*
Finds the last index of the given value in the array starting at the given index.
*
*
This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array.
*
*
A negative startIndex will return {@link #INDEX_NOT_FOUND} ({@code -1}). A startIndex larger than the
* array length will search from the end of the array.
*
* @param array the array to traverse for looking for the object, may be {@code null}
* @param valueToFind the value to find
* @param startIndex the start index to traverse backwards from
* @return the last index of the value within the array,
* {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input
*/
public static int lastIndexOf(final double[] array, final double valueToFind, int startIndex) {
if (isEmpty(array)) {
return INDEX_NOT_FOUND;
}
if (startIndex < 0) {
return INDEX_NOT_FOUND;
} else if (startIndex >= array.length) {
startIndex = array.length - 1;
}
for (int i = startIndex; i >= 0; i--) {
if (valueToFind == array[i]) {
return i;
}
}
return INDEX_NOT_FOUND;
}
/**
*
Finds the last index of the given value in the array starting at the given index.
* This method will return the index of the last value which falls between the region
* defined by valueToFind - tolerance and valueToFind + tolerance.
*
*
This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array.
*
*
A negative startIndex will return {@link #INDEX_NOT_FOUND} ({@code -1}). A startIndex larger than the
* array length will search from the end of the array.
*
* @param array the array to traverse for looking for the object, may be {@code null}
* @param valueToFind the value to find
* @param startIndex the start index to traverse backwards from
* @param tolerance search for value within plus/minus this amount
* @return the last index of the value within the array,
* {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input
*/
public static int lastIndexOf(final double[] array, final double valueToFind, int startIndex, final double tolerance) {
if (isEmpty(array)) {
return INDEX_NOT_FOUND;
}
if (startIndex < 0) {
return INDEX_NOT_FOUND;
} else if (startIndex >= array.length) {
startIndex = array.length - 1;
}
final double min = valueToFind - tolerance;
final double max = valueToFind + tolerance;
for (int i = startIndex; i >= 0; i--) {
if (array[i] >= min && array[i] <= max) {
return i;
}
}
return INDEX_NOT_FOUND;
}
/**
*
Finds the last index of the given value within the array.
*
*
This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array.
*
* @param array the array to traverse backwards looking for the object, may be {@code null}
* @param valueToFind the object to find
* @return the last index of the value within the array,
* {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input
*/
public static int lastIndexOf(final float[] array, final float valueToFind) {
return lastIndexOf(array, valueToFind, Integer.MAX_VALUE);
}
/**
*
Finds the last index of the given value in the array starting at the given index.
*
*
This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array.
*
*
A negative startIndex will return {@link #INDEX_NOT_FOUND} ({@code -1}). A startIndex larger than the
* array length will search from the end of the array.
*
* @param array the array to traverse for looking for the object, may be {@code null}
* @param valueToFind the value to find
* @param startIndex the start index to traverse backwards from
* @return the last index of the value within the array,
* {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input
*/
public static int lastIndexOf(final float[] array, final float valueToFind, int startIndex) {
if (isEmpty(array)) {
return INDEX_NOT_FOUND;
}
if (startIndex < 0) {
return INDEX_NOT_FOUND;
} else if (startIndex >= array.length) {
startIndex = array.length - 1;
}
for (int i = startIndex; i >= 0; i--) {
if (valueToFind == array[i]) {
return i;
}
}
return INDEX_NOT_FOUND;
}
/**
*
Finds the last index of the given value within the array.
*
*
This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array.
*
* @param array the array to traverse backwards looking for the object, may be {@code null}
* @param valueToFind the object to find
* @return the last index of the value within the array,
* {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input
*/
public static int lastIndexOf(final int[] array, final int valueToFind) {
return lastIndexOf(array, valueToFind, Integer.MAX_VALUE);
}
/**
*
Finds the last index of the given value in the array starting at the given index.
*
*
This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array.
*
*
A negative startIndex will return {@link #INDEX_NOT_FOUND} ({@code -1}). A startIndex larger than the
* array length will search from the end of the array.
*
* @param array the array to traverse for looking for the object, may be {@code null}
* @param valueToFind the value to find
* @param startIndex the start index to traverse backwards from
* @return the last index of the value within the array,
* {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input
*/
public static int lastIndexOf(final int[] array, final int valueToFind, int startIndex) {
if (array == null) {
return INDEX_NOT_FOUND;
}
if (startIndex < 0) {
return INDEX_NOT_FOUND;
} else if (startIndex >= array.length) {
startIndex = array.length - 1;
}
for (int i = startIndex; i >= 0; i--) {
if (valueToFind == array[i]) {
return i;
}
}
return INDEX_NOT_FOUND;
}
/**
*
Finds the last index of the given value within the array.
*
*
This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array.
*
* @param array the array to traverse backwards looking for the object, may be {@code null}
* @param valueToFind the object to find
* @return the last index of the value within the array,
* {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input
*/
public static int lastIndexOf(final long[] array, final long valueToFind) {
return lastIndexOf(array, valueToFind, Integer.MAX_VALUE);
}
/**
*
Finds the last index of the given value in the array starting at the given index.
*
*
This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array.
*
*
A negative startIndex will return {@link #INDEX_NOT_FOUND} ({@code -1}). A startIndex larger than the
* array length will search from the end of the array.
*
* @param array the array to traverse for looking for the object, may be {@code null}
* @param valueToFind the value to find
* @param startIndex the start index to traverse backwards from
* @return the last index of the value within the array,
* {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input
*/
public static int lastIndexOf(final long[] array, final long valueToFind, int startIndex) {
if (array == null) {
return INDEX_NOT_FOUND;
}
if (startIndex < 0) {
return INDEX_NOT_FOUND;
} else if (startIndex >= array.length) {
startIndex = array.length - 1;
}
for (int i = startIndex; i >= 0; i--) {
if (valueToFind == array[i]) {
return i;
}
}
return INDEX_NOT_FOUND;
}
/**
*
Finds the last index of the given object within the array.
*
*
This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array.
*
* @param array the array to traverse backwards looking for the object, may be {@code null}
* @param objectToFind the object to find, may be {@code null}
* @return the last index of the object within the array,
* {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input
*/
public static int lastIndexOf(final Object[] array, final Object objectToFind) {
return lastIndexOf(array, objectToFind, Integer.MAX_VALUE);
}
/**
*
Finds the last index of the given object in the array starting at the given index.
*
*
This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array.
*
*
A negative startIndex will return {@link #INDEX_NOT_FOUND} ({@code -1}). A startIndex larger than
* the array length will search from the end of the array.
*
* @param array the array to traverse for looking for the object, may be {@code null}
* @param objectToFind the object to find, may be {@code null}
* @param startIndex the start index to traverse backwards from
* @return the last index of the object within the array,
* {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input
*/
public static int lastIndexOf(final Object[] array, final Object objectToFind, int startIndex) {
if (array == null) {
return INDEX_NOT_FOUND;
}
if (startIndex < 0) {
return INDEX_NOT_FOUND;
} else if (startIndex >= array.length) {
startIndex = array.length - 1;
}
if (objectToFind == null) {
for (int i = startIndex; i >= 0; i--) {
if (array[i] == null) {
return i;
}
}
} else if (array.getClass().getComponentType().isInstance(objectToFind)) {
for (int i = startIndex; i >= 0; i--) {
if (objectToFind.equals(array[i])) {
return i;
}
}
}
return INDEX_NOT_FOUND;
}
/**
*
Finds the last index of the given value within the array.
*
*
This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array.
*
* @param array the array to traverse backwards looking for the object, may be {@code null}
* @param valueToFind the object to find
* @return the last index of the value within the array,
* {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input
*/
public static int lastIndexOf(final short[] array, final short valueToFind) {
return lastIndexOf(array, valueToFind, Integer.MAX_VALUE);
}
/**
*
Finds the last index of the given value in the array starting at the given index.
*
*
This method returns {@link #INDEX_NOT_FOUND} ({@code -1}) for a {@code null} input array.
*
*
A negative startIndex will return {@link #INDEX_NOT_FOUND} ({@code -1}). A startIndex larger than the
* array length will search from the end of the array.
*
* @param array the array to traverse for looking for the object, may be {@code null}
* @param valueToFind the value to find
* @param startIndex the start index to traverse backwards from
* @return the last index of the value within the array,
* {@link #INDEX_NOT_FOUND} ({@code -1}) if not found or {@code null} array input
*/
public static int lastIndexOf(final short[] array, final short valueToFind, int startIndex) {
if (array == null) {
return INDEX_NOT_FOUND;
}
if (startIndex < 0) {
return INDEX_NOT_FOUND;
} else if (startIndex >= array.length) {
startIndex = array.length - 1;
}
for (int i = startIndex; i >= 0; i--) {
if (valueToFind == array[i]) {
return i;
}
}
return INDEX_NOT_FOUND;
}
/**
*
Defensive programming technique to change a {@code null}
* reference to an empty one.
*
*
This method returns an empty array for a {@code null} input array.
*
*
As a memory optimizing technique an empty array passed in will be overridden with
* the empty {@code public static} references in this class.
*
* @param array the array to check for {@code null} or empty
* @return the same array, {@code public static} empty array if {@code null} or empty input
* @since 2.5
*/
public static boolean[] nullToEmpty(final boolean[] array) {
if (isEmpty(array)) {
return EMPTY_BOOLEAN_ARRAY;
}
return array;
}
/**
*
Defensive programming technique to change a {@code null}
* reference to an empty one.
*
*
This method returns an empty array for a {@code null} input array.
*
*
As a memory optimizing technique an empty array passed in will be overridden with
* the empty {@code public static} references in this class.
*
* @param array the array to check for {@code null} or empty
* @return the same array, {@code public static} empty array if {@code null} or empty input
* @since 2.5
*/
public static Boolean[] nullToEmpty(final Boolean[] array) {
if (isEmpty(array)) {
return EMPTY_BOOLEAN_OBJECT_ARRAY;
}
return array;
}
/**
*
Defensive programming technique to change a {@code null}
* reference to an empty one.
*
*
This method returns an empty array for a {@code null} input array.
*
*
As a memory optimizing technique an empty array passed in will be overridden with
* the empty {@code public static} references in this class.
*
* @param array the array to check for {@code null} or empty
* @return the same array, {@code public static} empty array if {@code null} or empty input
* @since 2.5
*/
public static byte[] nullToEmpty(final byte[] array) {
if (isEmpty(array)) {
return EMPTY_BYTE_ARRAY;
}
return array;
}
/**
*
Defensive programming technique to change a {@code null}
* reference to an empty one.
*
*
This method returns an empty array for a {@code null} input array.
*
*
As a memory optimizing technique an empty array passed in will be overridden with
* the empty {@code public static} references in this class.
*
* @param array the array to check for {@code null} or empty
* @return the same array, {@code public static} empty array if {@code null} or empty input
* @since 2.5
*/
public static Byte[] nullToEmpty(final Byte[] array) {
if (isEmpty(array)) {
return EMPTY_BYTE_OBJECT_ARRAY;
}
return array;
}
/**
*
Defensive programming technique to change a {@code null}
* reference to an empty one.
*
*
This method returns an empty array for a {@code null} input array.
*
*
As a memory optimizing technique an empty array passed in will be overridden with
* the empty {@code public static} references in this class.
*
* @param array the array to check for {@code null} or empty
* @return the same array, {@code public static} empty array if {@code null} or empty input
* @since 2.5
*/
public static char[] nullToEmpty(final char[] array) {
if (isEmpty(array)) {
return EMPTY_CHAR_ARRAY;
}
return array;
}
/**
*
Defensive programming technique to change a {@code null}
* reference to an empty one.
*
*
This method returns an empty array for a {@code null} input array.
*
*
As a memory optimizing technique an empty array passed in will be overridden with
* the empty {@code public static} references in this class.
*
* @param array the array to check for {@code null} or empty
* @return the same array, {@code public static} empty array if {@code null} or empty input
* @since 2.5
*/
public static Character[] nullToEmpty(final Character[] array) {
if (isEmpty(array)) {
return EMPTY_CHARACTER_OBJECT_ARRAY;
}
return array;
}
/**
*
Defensive programming technique to change a {@code null}
* reference to an empty one.
*
*
This method returns an empty array for a {@code null} input array.
*
*
As a memory optimizing technique an empty array passed in will be overridden with
* the empty {@code public static} references in this class.
*
* @param array the array to check for {@code null} or empty
* @return the same array, {@code public static} empty array if {@code null} or empty input
* @since 3.2
*/
public static Class>[] nullToEmpty(final Class>[] array) {
if (isEmpty(array)) {
return EMPTY_CLASS_ARRAY;
}
return array;
}
/**
*
Defensive programming technique to change a {@code null}
* reference to an empty one.
*
*
This method returns an empty array for a {@code null} input array.
*
*
As a memory optimizing technique an empty array passed in will be overridden with
* the empty {@code public static} references in this class.
*
* @param array the array to check for {@code null} or empty
* @return the same array, {@code public static} empty array if {@code null} or empty input
* @since 2.5
*/
public static double[] nullToEmpty(final double[] array) {
if (isEmpty(array)) {
return EMPTY_DOUBLE_ARRAY;
}
return array;
}
/**
*
Defensive programming technique to change a {@code null}
* reference to an empty one.
*
*
This method returns an empty array for a {@code null} input array.
*
*
As a memory optimizing technique an empty array passed in will be overridden with
* the empty {@code public static} references in this class.
*
* @param array the array to check for {@code null} or empty
* @return the same array, {@code public static} empty array if {@code null} or empty input
* @since 2.5
*/
public static Double[] nullToEmpty(final Double[] array) {
if (isEmpty(array)) {
return EMPTY_DOUBLE_OBJECT_ARRAY;
}
return array;
}
/**
*
Defensive programming technique to change a {@code null}
* reference to an empty one.
*
*
This method returns an empty array for a {@code null} input array.
*
*
As a memory optimizing technique an empty array passed in will be overridden with
* the empty {@code public static} references in this class.
*
* @param array the array to check for {@code null} or empty
* @return the same array, {@code public static} empty array if {@code null} or empty input
* @since 2.5
*/
public static float[] nullToEmpty(final float[] array) {
if (isEmpty(array)) {
return EMPTY_FLOAT_ARRAY;
}
return array;
}
/**
*
Defensive programming technique to change a {@code null}
* reference to an empty one.
*
*
This method returns an empty array for a {@code null} input array.
*
*
As a memory optimizing technique an empty array passed in will be overridden with
* the empty {@code public static} references in this class.
*
* @param array the array to check for {@code null} or empty
* @return the same array, {@code public static} empty array if {@code null} or empty input
* @since 2.5
*/
public static Float[] nullToEmpty(final Float[] array) {
if (isEmpty(array)) {
return EMPTY_FLOAT_OBJECT_ARRAY;
}
return array;
}
/**
*
Defensive programming technique to change a {@code null}
* reference to an empty one.
*
*
This method returns an empty array for a {@code null} input array.
*
*
As a memory optimizing technique an empty array passed in will be overridden with
* the empty {@code public static} references in this class.
*
* @param array the array to check for {@code null} or empty
* @return the same array, {@code public static} empty array if {@code null} or empty input
* @since 2.5
*/
public static int[] nullToEmpty(final int[] array) {
if (isEmpty(array)) {
return EMPTY_INT_ARRAY;
}
return array;
}
// Primitive/Object array converters
// ----------------------------------------------------------------------
/**
*
Defensive programming technique to change a {@code null}
* reference to an empty one.
*
*
This method returns an empty array for a {@code null} input array.
*
*
As a memory optimizing technique an empty array passed in will be overridden with
* the empty {@code public static} references in this class.
*
* @param array the array to check for {@code null} or empty
* @return the same array, {@code public static} empty array if {@code null} or empty input
* @since 2.5
*/
public static Integer[] nullToEmpty(final Integer[] array) {
if (isEmpty(array)) {
return EMPTY_INTEGER_OBJECT_ARRAY;
}
return array;
}
/**
*
Defensive programming technique to change a {@code null}
* reference to an empty one.
*
*
This method returns an empty array for a {@code null} input array.
*
*
As a memory optimizing technique an empty array passed in will be overridden with
* the empty {@code public static} references in this class.
*
* @param array the array to check for {@code null} or empty
* @return the same array, {@code public static} empty array if {@code null} or empty input
* @since 2.5
*/
public static long[] nullToEmpty(final long[] array) {
if (isEmpty(array)) {
return EMPTY_LONG_ARRAY;
}
return array;
}
/**
*
Defensive programming technique to change a {@code null}
* reference to an empty one.
*
*
This method returns an empty array for a {@code null} input array.
*
*
As a memory optimizing technique an empty array passed in will be overridden with
* the empty {@code public static} references in this class.
*
* @param array the array to check for {@code null} or empty
* @return the same array, {@code public static} empty array if {@code null} or empty input
* @since 2.5
*/
public static Long[] nullToEmpty(final Long[] array) {
if (isEmpty(array)) {
return EMPTY_LONG_OBJECT_ARRAY;
}
return array;
}
/**
*
Defensive programming technique to change a {@code null}
* reference to an empty one.
*
*
This method returns an empty array for a {@code null} input array.
*
*
As a memory optimizing technique an empty array passed in will be overridden with
* the empty {@code public static} references in this class.
*
* @param array the array to check for {@code null} or empty
* @return the same array, {@code public static} empty array if {@code null} or empty input
* @since 2.5
*/
public static Object[] nullToEmpty(final Object[] array) {
if (isEmpty(array)) {
return EMPTY_OBJECT_ARRAY;
}
return array;
}
/**
*
Defensive programming technique to change a {@code null}
* reference to an empty one.
*
*
This method returns an empty array for a {@code null} input array.
*
*
As a memory optimizing technique an empty array passed in will be overridden with
* the empty {@code public static} references in this class.
*
* @param array the array to check for {@code null} or empty
* @return the same array, {@code public static} empty array if {@code null} or empty input
* @since 2.5
*/
public static short[] nullToEmpty(final short[] array) {
if (isEmpty(array)) {
return EMPTY_SHORT_ARRAY;
}
return array;
}
/**
*
Defensive programming technique to change a {@code null}
* reference to an empty one.
*
*
This method returns an empty array for a {@code null} input array.
*
*
As a memory optimizing technique an empty array passed in will be overridden with
* the empty {@code public static} references in this class.
*
* @param array the array to check for {@code null} or empty
* @return the same array, {@code public static} empty array if {@code null} or empty input
* @since 2.5
*/
public static Short[] nullToEmpty(final Short[] array) {
if (isEmpty(array)) {
return EMPTY_SHORT_OBJECT_ARRAY;
}
return array;
}
/**
*
Defensive programming technique to change a {@code null}
* reference to an empty one.
*
*
This method returns an empty array for a {@code null} input array.
*
*
As a memory optimizing technique an empty array passed in will be overridden with
* the empty {@code public static} references in this class.
*
* @param array the array to check for {@code null} or empty
* @return the same array, {@code public static} empty array if {@code null} or empty input
* @since 2.5
*/
public static String[] nullToEmpty(final String[] array) {
if (isEmpty(array)) {
return EMPTY_STRING_ARRAY;
}
return array;
}
// nullToEmpty
//-----------------------------------------------------------------------
/**
*
Defensive programming technique to change a {@code null}
* reference to an empty one.
*
*
This method returns an empty array for a {@code null} input array.
*
* @param array the array to check for {@code null} or empty
* @param type the class representation of the desired array
* @param the class type
* @return the same array, {@code public static} empty array if {@code null}
* @throws IllegalArgumentException if the type argument is null
* @since 3.5
*/
public static T[] nullToEmpty(final T[] array, final Class type) {
if (type == null) {
throw new IllegalArgumentException("The type must not be null");
}
if (array == null) {
return type.cast(Array.newInstance(type.getComponentType(), 0));
}
return array;
}
/**
* Removes the element at the specified position from the specified array.
* All subsequent elements are shifted to the left (subtracts one from
* their indices).
*
*
This method returns a new array with the same elements of the input
* array except the element on the specified position. The component
* type of the returned array is always the same as that of the input
* array.
*
*
If the input array is {@code null}, an IndexOutOfBoundsException
* will be thrown, because in that case no valid index can be specified.
*
*
* ArrayUtils.remove([true], 0) = []
* ArrayUtils.remove([true, false], 0) = [false]
* ArrayUtils.remove([true, false], 1) = [true]
* ArrayUtils.remove([true, true, false], 1) = [true, false]
*
*
* @param array the array to remove the element from, may not be {@code null}
* @param index the position of the element to be removed
* @return A new array containing the existing elements except the element
* at the specified position.
* @throws IndexOutOfBoundsException if the index is out of range
* (index < 0 || index >= array.length), or if the array is {@code null}.
* @since 2.1
*/
public static boolean[] remove(final boolean[] array, final int index) {
return (boolean[]) remove((Object) array, index);
}
/**
* Removes the element at the specified position from the specified array.
* All subsequent elements are shifted to the left (subtracts one from
* their indices).
*
*
This method returns a new array with the same elements of the input
* array except the element on the specified position. The component
* type of the returned array is always the same as that of the input
* array.
*
*
If the input array is {@code null}, an IndexOutOfBoundsException
* will be thrown, because in that case no valid index can be specified.
*
*
* ArrayUtils.remove([1], 0) = []
* ArrayUtils.remove([1, 0], 0) = [0]
* ArrayUtils.remove([1, 0], 1) = [1]
* ArrayUtils.remove([1, 0, 1], 1) = [1, 1]
*
*
* @param array the array to remove the element from, may not be {@code null}
* @param index the position of the element to be removed
* @return A new array containing the existing elements except the element
* at the specified position.
* @throws IndexOutOfBoundsException if the index is out of range
* (index < 0 || index >= array.length), or if the array is {@code null}.
* @since 2.1
*/
public static byte[] remove(final byte[] array, final int index) {
return (byte[]) remove((Object) array, index);
}
/**
* Removes the element at the specified position from the specified array.
* All subsequent elements are shifted to the left (subtracts one from
* their indices).
*
*
This method returns a new array with the same elements of the input
* array except the element on the specified position. The component
* type of the returned array is always the same as that of the input
* array.
*
*
If the input array is {@code null}, an IndexOutOfBoundsException
* will be thrown, because in that case no valid index can be specified.
*
*
* ArrayUtils.remove(['a'], 0) = []
* ArrayUtils.remove(['a', 'b'], 0) = ['b']
* ArrayUtils.remove(['a', 'b'], 1) = ['a']
* ArrayUtils.remove(['a', 'b', 'c'], 1) = ['a', 'c']
*
*
* @param array the array to remove the element from, may not be {@code null}
* @param index the position of the element to be removed
* @return A new array containing the existing elements except the element
* at the specified position.
* @throws IndexOutOfBoundsException if the index is out of range
* (index < 0 || index >= array.length), or if the array is {@code null}.
* @since 2.1
*/
public static char[] remove(final char[] array, final int index) {
return (char[]) remove((Object) array, index);
}
/**
* Removes the element at the specified position from the specified array.
* All subsequent elements are shifted to the left (subtracts one from
* their indices).
*
*
This method returns a new array with the same elements of the input
* array except the element on the specified position. The component
* type of the returned array is always the same as that of the input
* array.
*
*
If the input array is {@code null}, an IndexOutOfBoundsException
* will be thrown, because in that case no valid index can be specified.
*
*
* ArrayUtils.remove([1.1], 0) = []
* ArrayUtils.remove([2.5, 6.0], 0) = [6.0]
* ArrayUtils.remove([2.5, 6.0], 1) = [2.5]
* ArrayUtils.remove([2.5, 6.0, 3.8], 1) = [2.5, 3.8]
*
*
* @param array the array to remove the element from, may not be {@code null}
* @param index the position of the element to be removed
* @return A new array containing the existing elements except the element
* at the specified position.
* @throws IndexOutOfBoundsException if the index is out of range
* (index < 0 || index >= array.length), or if the array is {@code null}.
* @since 2.1
*/
public static double[] remove(final double[] array, final int index) {
return (double[]) remove((Object) array, index);
}
/**
* Removes the element at the specified position from the specified array.
* All subsequent elements are shifted to the left (subtracts one from
* their indices).
*
*
This method returns a new array with the same elements of the input
* array except the element on the specified position. The component
* type of the returned array is always the same as that of the input
* array.
*
*
If the input array is {@code null}, an IndexOutOfBoundsException
* will be thrown, because in that case no valid index can be specified.
*
*
* ArrayUtils.remove([1.1], 0) = []
* ArrayUtils.remove([2.5, 6.0], 0) = [6.0]
* ArrayUtils.remove([2.5, 6.0], 1) = [2.5]
* ArrayUtils.remove([2.5, 6.0, 3.8], 1) = [2.5, 3.8]
*
*
* @param array the array to remove the element from, may not be {@code null}
* @param index the position of the element to be removed
* @return A new array containing the existing elements except the element
* at the specified position.
* @throws IndexOutOfBoundsException if the index is out of range
* (index < 0 || index >= array.length), or if the array is {@code null}.
* @since 2.1
*/
public static float[] remove(final float[] array, final int index) {
return (float[]) remove((Object) array, index);
}
/**
* Removes the element at the specified position from the specified array.
* All subsequent elements are shifted to the left (subtracts one from
* their indices).
*
*
This method returns a new array with the same elements of the input
* array except the element on the specified position. The component
* type of the returned array is always the same as that of the input
* array.
*
*
If the input array is {@code null}, an IndexOutOfBoundsException
* will be thrown, because in that case no valid index can be specified.
*
*
* ArrayUtils.remove([1], 0) = []
* ArrayUtils.remove([2, 6], 0) = [6]
* ArrayUtils.remove([2, 6], 1) = [2]
* ArrayUtils.remove([2, 6, 3], 1) = [2, 3]
*
*
* @param array the array to remove the element from, may not be {@code null}
* @param index the position of the element to be removed
* @return A new array containing the existing elements except the element
* at the specified position.
* @throws IndexOutOfBoundsException if the index is out of range
* (index < 0 || index >= array.length), or if the array is {@code null}.
* @since 2.1
*/
public static int[] remove(final int[] array, final int index) {
return (int[]) remove((Object) array, index);
}
/**
* Removes the element at the specified position from the specified array.
* All subsequent elements are shifted to the left (subtracts one from
* their indices).
*
*
This method returns a new array with the same elements of the input
* array except the element on the specified position. The component
* type of the returned array is always the same as that of the input
* array.
*
*
If the input array is {@code null}, an IndexOutOfBoundsException
* will be thrown, because in that case no valid index can be specified.
*
*
* ArrayUtils.remove([1], 0) = []
* ArrayUtils.remove([2, 6], 0) = [6]
* ArrayUtils.remove([2, 6], 1) = [2]
* ArrayUtils.remove([2, 6, 3], 1) = [2, 3]
*
*
* @param array the array to remove the element from, may not be {@code null}
* @param index the position of the element to be removed
* @return A new array containing the existing elements except the element
* at the specified position.
* @throws IndexOutOfBoundsException if the index is out of range
* (index < 0 || index >= array.length), or if the array is {@code null}.
* @since 2.1
*/
public static long[] remove(final long[] array, final int index) {
return (long[]) remove((Object) array, index);
}
/**
* Removes the element at the specified position from the specified array.
* All subsequent elements are shifted to the left (subtracts one from
* their indices).
*
*
This method returns a new array with the same elements of the input
* array except the element on the specified position. The component
* type of the returned array is always the same as that of the input
* array.
*
*
If the input array is {@code null}, an IndexOutOfBoundsException
* will be thrown, because in that case no valid index can be specified.
*
* @param array the array to remove the element from, may not be {@code null}
* @param index the position of the element to be removed
* @return A new array containing the existing elements except the element
* at the specified position.
* @throws IndexOutOfBoundsException if the index is out of range
* (index < 0 || index >= array.length), or if the array is {@code null}.
* @since 2.1
*/
private static Object remove(final Object array, final int index) {
final int length = getLength(array);
if (index < 0 || index >= length) {
throw new IndexOutOfBoundsException("Index: " + index + ", Length: " + length);
}
final Object result = Array.newInstance(array.getClass().getComponentType(), length - 1);
System.arraycopy(array, 0, result, 0, index);
if (index < length - 1) {
System.arraycopy(array, index + 1, result, index, length - index - 1);
}
return result;
}
/**
*
Removes the element at the specified position from the specified array.
* All subsequent elements are shifted to the left (subtracts one from
* their indices).
*
*
This method returns a new array with the same elements of the input
* array except the element on the specified position. The component
* type of the returned array is always the same as that of the input
* array.
*
*
If the input array is {@code null}, an IndexOutOfBoundsException
* will be thrown, because in that case no valid index can be specified.
*
*
* ArrayUtils.remove([1], 0) = []
* ArrayUtils.remove([2, 6], 0) = [6]
* ArrayUtils.remove([2, 6], 1) = [2]
* ArrayUtils.remove([2, 6, 3], 1) = [2, 3]
*
*
* @param array the array to remove the element from, may not be {@code null}
* @param index the position of the element to be removed
* @return A new array containing the existing elements except the element
* at the specified position.
* @throws IndexOutOfBoundsException if the index is out of range
* (index < 0 || index >= array.length), or if the array is {@code null}.
* @since 2.1
*/
public static short[] remove(final short[] array, final int index) {
return (short[]) remove((Object) array, index);
}
/**
* Removes the element at the specified position from the specified array.
* All subsequent elements are shifted to the left (subtracts one from
* their indices).
*
*
This method returns a new array with the same elements of the input
* array except the element on the specified position. The component
* type of the returned array is always the same as that of the input
* array.
*
*
If the input array is {@code null}, an IndexOutOfBoundsException
* will be thrown, because in that case no valid index can be specified.
*
*
* ArrayUtils.remove(["a"], 0) = []
* ArrayUtils.remove(["a", "b"], 0) = ["b"]
* ArrayUtils.remove(["a", "b"], 1) = ["a"]
* ArrayUtils.remove(["a", "b", "c"], 1) = ["a", "c"]
*
*
* @param the component type of the array
* @param array the array to remove the element from, may not be {@code null}
* @param index the position of the element to be removed
* @return A new array containing the existing elements except the element
* at the specified position.
* @throws IndexOutOfBoundsException if the index is out of range
* (index < 0 || index >= array.length), or if the array is {@code null}.
* @since 2.1
*/
@SuppressWarnings("unchecked") // remove() always creates an array of the same type as its input
public static T[] remove(final T[] array, final int index) {
return (T[]) remove((Object) array, index);
}
/**
* Removes the elements at the specified positions from the specified array.
* All remaining elements are shifted to the left.
*
*
This method returns a new array with the same elements of the input
* array except those at the specified positions. The component
* type of the returned array is always the same as that of the input
* array.
*
*
If the input array is {@code null}, an IndexOutOfBoundsException
* will be thrown, because in that case no valid index can be specified.
*
*
* ArrayUtils.removeAll([true, false, true], 0, 2) = [false]
* ArrayUtils.removeAll([true, false, true], 1, 2) = [true]
*
*
* @param array the array to remove the element from, may not be {@code null}
* @param indices the positions of the elements to be removed
* @return A new array containing the existing elements except those
* at the specified positions.
* @throws IndexOutOfBoundsException if any index is out of range
* (index < 0 || index >= array.length), or if the array is {@code null}.
* @since 3.0.1
*/
public static boolean[] removeAll(final boolean[] array, final int... indices) {
return (boolean[]) removeAll((Object) array, indices);
}
/**
* Removes the elements at the specified positions from the specified array.
* All remaining elements are shifted to the left.
*
*
This method returns a new array with the same elements of the input
* array except those at the specified positions. The component
* type of the returned array is always the same as that of the input
* array.
*
*
If the input array is {@code null}, an IndexOutOfBoundsException
* will be thrown, because in that case no valid index can be specified.
*
*
* ArrayUtils.removeAll([1], 0) = []
* ArrayUtils.removeAll([2, 6], 0) = [6]
* ArrayUtils.removeAll([2, 6], 0, 1) = []
* ArrayUtils.removeAll([2, 6, 3], 1, 2) = [2]
* ArrayUtils.removeAll([2, 6, 3], 0, 2) = [6]
* ArrayUtils.removeAll([2, 6, 3], 0, 1, 2) = []
*
*
* @param array the array to remove the element from, may not be {@code null}
* @param indices the positions of the elements to be removed
* @return A new array containing the existing elements except those
* at the specified positions.
* @throws IndexOutOfBoundsException if any index is out of range
* (index < 0 || index >= array.length), or if the array is {@code null}.
* @since 3.0.1
*/
public static byte[] removeAll(final byte[] array, final int... indices) {
return (byte[]) removeAll((Object) array, indices);
}
/**
* Removes the elements at the specified positions from the specified array.
* All remaining elements are shifted to the left.
*
*
This method returns a new array with the same elements of the input
* array except those at the specified positions. The component
* type of the returned array is always the same as that of the input
* array.
*
*
If the input array is {@code null}, an IndexOutOfBoundsException
* will be thrown, because in that case no valid index can be specified.
*
*
* ArrayUtils.removeAll([1], 0) = []
* ArrayUtils.removeAll([2, 6], 0) = [6]
* ArrayUtils.removeAll([2, 6], 0, 1) = []
* ArrayUtils.removeAll([2, 6, 3], 1, 2) = [2]
* ArrayUtils.removeAll([2, 6, 3], 0, 2) = [6]
* ArrayUtils.removeAll([2, 6, 3], 0, 1, 2) = []
*
*
* @param array the array to remove the element from, may not be {@code null}
* @param indices the positions of the elements to be removed
* @return A new array containing the existing elements except those
* at the specified positions.
* @throws IndexOutOfBoundsException if any index is out of range
* (index < 0 || index >= array.length), or if the array is {@code null}.
* @since 3.0.1
*/
public static char[] removeAll(final char[] array, final int... indices) {
return (char[]) removeAll((Object) array, indices);
}
/**
* Removes the elements at the specified positions from the specified array.
* All remaining elements are shifted to the left.
*
*
This method returns a new array with the same elements of the input
* array except those at the specified positions. The component
* type of the returned array is always the same as that of the input
* array.
*
*
If the input array is {@code null}, an IndexOutOfBoundsException
* will be thrown, because in that case no valid index can be specified.
*
*
* ArrayUtils.removeAll([1], 0) = []
* ArrayUtils.removeAll([2, 6], 0) = [6]
* ArrayUtils.removeAll([2, 6], 0, 1) = []
* ArrayUtils.removeAll([2, 6, 3], 1, 2) = [2]
* ArrayUtils.removeAll([2, 6, 3], 0, 2) = [6]
* ArrayUtils.removeAll([2, 6, 3], 0, 1, 2) = []
*
*
* @param array the array to remove the element from, may not be {@code null}
* @param indices the positions of the elements to be removed
* @return A new array containing the existing elements except those
* at the specified positions.
* @throws IndexOutOfBoundsException if any index is out of range
* (index < 0 || index >= array.length), or if the array is {@code null}.
* @since 3.0.1
*/
public static double[] removeAll(final double[] array, final int... indices) {
return (double[]) removeAll((Object) array, indices);
}
/**
* Removes the elements at the specified positions from the specified array.
* All remaining elements are shifted to the left.
*
*
This method returns a new array with the same elements of the input
* array except those at the specified positions. The component
* type of the returned array is always the same as that of the input
* array.
*
*
If the input array is {@code null}, an IndexOutOfBoundsException
* will be thrown, because in that case no valid index can be specified.
*
*
* ArrayUtils.removeAll([1], 0) = []
* ArrayUtils.removeAll([2, 6], 0) = [6]
* ArrayUtils.removeAll([2, 6], 0, 1) = []
* ArrayUtils.removeAll([2, 6, 3], 1, 2) = [2]
* ArrayUtils.removeAll([2, 6, 3], 0, 2) = [6]
* ArrayUtils.removeAll([2, 6, 3], 0, 1, 2) = []
*
*
* @param array the array to remove the element from, may not be {@code null}
* @param indices the positions of the elements to be removed
* @return A new array containing the existing elements except those
* at the specified positions.
* @throws IndexOutOfBoundsException if any index is out of range
* (index < 0 || index >= array.length), or if the array is {@code null}.
* @since 3.0.1
*/
public static float[] removeAll(final float[] array, final int... indices) {
return (float[]) removeAll((Object) array, indices);
}
/**
* Removes the elements at the specified positions from the specified array.
* All remaining elements are shifted to the left.
*
*
This method returns a new array with the same elements of the input
* array except those at the specified positions. The component
* type of the returned array is always the same as that of the input
* array.
*
*
If the input array is {@code null}, an IndexOutOfBoundsException
* will be thrown, because in that case no valid index can be specified.
*
*
* ArrayUtils.removeAll([1], 0) = []
* ArrayUtils.removeAll([2, 6], 0) = [6]
* ArrayUtils.removeAll([2, 6], 0, 1) = []
* ArrayUtils.removeAll([2, 6, 3], 1, 2) = [2]
* ArrayUtils.removeAll([2, 6, 3], 0, 2) = [6]
* ArrayUtils.removeAll([2, 6, 3], 0, 1, 2) = []
*
*
* @param array the array to remove the element from, may not be {@code null}
* @param indices the positions of the elements to be removed
* @return A new array containing the existing elements except those
* at the specified positions.
* @throws IndexOutOfBoundsException if any index is out of range
* (index < 0 || index >= array.length), or if the array is {@code null}.
* @since 3.0.1
*/
public static int[] removeAll(final int[] array, final int... indices) {
return (int[]) removeAll((Object) array, indices);
}
/**
* Removes the elements at the specified positions from the specified array.
* All remaining elements are shifted to the left.
*
*
This method returns a new array with the same elements of the input
* array except those at the specified positions. The component
* type of the returned array is always the same as that of the input
* array.
*
*
If the input array is {@code null}, an IndexOutOfBoundsException
* will be thrown, because in that case no valid index can be specified.
*
*
* ArrayUtils.removeAll([1], 0) = []
* ArrayUtils.removeAll([2, 6], 0) = [6]
* ArrayUtils.removeAll([2, 6], 0, 1) = []
* ArrayUtils.removeAll([2, 6, 3], 1, 2) = [2]
* ArrayUtils.removeAll([2, 6, 3], 0, 2) = [6]
* ArrayUtils.removeAll([2, 6, 3], 0, 1, 2) = []
*
*
* @param array the array to remove the element from, may not be {@code null}
* @param indices the positions of the elements to be removed
* @return A new array containing the existing elements except those
* at the specified positions.
* @throws IndexOutOfBoundsException if any index is out of range
* (index < 0 || index >= array.length), or if the array is {@code null}.
* @since 3.0.1
*/
public static long[] removeAll(final long[] array, final int... indices) {
return (long[]) removeAll((Object) array, indices);
}
/**
* Removes multiple array elements specified by indices.
*
* @param array source
* @param indices to remove
* @return new array of same type minus elements specified by the set bits in {@code indices}
* @since 3.2
*/
// package protected for access by unit tests
static Object removeAll(final Object array, final BitSet indices) {
if (array == null) {
return null;
}
final int srcLength = getLength(array);
// No need to check maxIndex here, because method only currently called from removeElements()
// which guarantee to generate on;y valid bit entries.
// final int maxIndex = indices.length();
// if (maxIndex > srcLength) {
// throw new IndexOutOfBoundsException("Index: " + (maxIndex-1) + ", Length: " + srcLength);
// }
final int removals = indices.cardinality(); // true bits are items to remove
final Object result = Array.newInstance(array.getClass().getComponentType(), srcLength - removals);
int srcIndex = 0;
int destIndex = 0;
int count;
int set;
while ((set = indices.nextSetBit(srcIndex)) != -1) {
count = set - srcIndex;
if (count > 0) {
System.arraycopy(array, srcIndex, result, destIndex, count);
destIndex += count;
}
srcIndex = indices.nextClearBit(set);
}
count = srcLength - srcIndex;
if (count > 0) {
System.arraycopy(array, srcIndex, result, destIndex, count);
}
return result;
}
/**
* Removes multiple array elements specified by index.
* @param array source
* @param indices to remove
* @return new array of same type minus elements specified by unique values of {@code indices}
* @since 3.0.1
*/
// package protected for access by unit tests
static Object removeAll(final Object array, final int... indices) {
final int length = getLength(array);
int diff = 0; // number of distinct indexes, i.e. number of entries that will be removed
final int[] clonedIndices = clone(indices);
Arrays.sort(clonedIndices);
// identify length of result array
if (isNotEmpty(clonedIndices)) {
int i = clonedIndices.length;
int prevIndex = length;
while (--i >= 0) {
final int index = clonedIndices[i];
if (index < 0 || index >= length) {
throw new IndexOutOfBoundsException("Index: " + index + ", Length: " + length);
}
if (index >= prevIndex) {
continue;
}
diff++;
prevIndex = index;
}
}
// create result array
final Object result = Array.newInstance(array.getClass().getComponentType(), length - diff);
if (diff < length) {
int end = length; // index just after last copy
int dest = length - diff; // number of entries so far not copied
for (int i = clonedIndices.length - 1; i >= 0; i--) {
final int index = clonedIndices[i];
if (end - index > 1) { // same as (cp > 0)
final int cp = end - index - 1;
dest -= cp;
System.arraycopy(array, index + 1, result, dest, cp);
// Afer this copy, we still have room for dest items.
}
end = index;
}
if (end > 0) {
System.arraycopy(array, 0, result, 0, end);
}
}
return result;
}
/**
* Removes the elements at the specified positions from the specified array.
* All remaining elements are shifted to the left.
*
*
This method returns a new array with the same elements of the input
* array except those at the specified positions. The component
* type of the returned array is always the same as that of the input
* array.
*
*
If the input array is {@code null}, an IndexOutOfBoundsException
* will be thrown, because in that case no valid index can be specified.
*
*
* ArrayUtils.removeAll([1], 0) = []
* ArrayUtils.removeAll([2, 6], 0) = [6]
* ArrayUtils.removeAll([2, 6], 0, 1) = []
* ArrayUtils.removeAll([2, 6, 3], 1, 2) = [2]
* ArrayUtils.removeAll([2, 6, 3], 0, 2) = [6]
* ArrayUtils.removeAll([2, 6, 3], 0, 1, 2) = []
*
*
* @param array the array to remove the element from, may not be {@code null}
* @param indices the positions of the elements to be removed
* @return A new array containing the existing elements except those
* at the specified positions.
* @throws IndexOutOfBoundsException if any index is out of range
* (index < 0 || index >= array.length), or if the array is {@code null}.
* @since 3.0.1
*/
public static short[] removeAll(final short[] array, final int... indices) {
return (short[]) removeAll((Object) array, indices);
}
/**
* Removes the elements at the specified positions from the specified array.
* All remaining elements are shifted to the left.
*
*
This method returns a new array with the same elements of the input
* array except those at the specified positions. The component
* type of the returned array is always the same as that of the input
* array.
*
*
If the input array is {@code null}, an IndexOutOfBoundsException
* will be thrown, because in that case no valid index can be specified.
*
*
* ArrayUtils.removeAll(["a", "b", "c"], 0, 2) = ["b"]
* ArrayUtils.removeAll(["a", "b", "c"], 1, 2) = ["a"]
*
*
* @param the component type of the array
* @param array the array to remove the element from, may not be {@code null}
* @param indices the positions of the elements to be removed
* @return A new array containing the existing elements except those
* at the specified positions.
* @throws IndexOutOfBoundsException if any index is out of range
* (index < 0 || index >= array.length), or if the array is {@code null}.
* @since 3.0.1
*/
@SuppressWarnings("unchecked") // removeAll() always creates an array of the same type as its input
public static T[] removeAll(final T[] array, final int... indices) {
return (T[]) removeAll((Object) array, indices);
}
/**
* Removes the occurrences of the specified element from the specified boolean array.
*
*
* All subsequent elements are shifted to the left (subtracts one from their indices).
* If the array doesn't contains such an element, no elements are removed from the array.
* {@code null} will be returned if the input array is {@code null}.
*
*
* @param element the element to remove
* @param array the input array
*
* @return A new array containing the existing elements except the occurrences of the specified element.
* @since 3.5
* @deprecated Use {@link #removeAllOccurrences(boolean[], boolean)}
*/
public static boolean[] removeAllOccurences(final boolean[] array, final boolean element) {
return (boolean[]) removeAll((Object) array, indexesOf(array, element));
}
/**
* Removes the occurrences of the specified element from the specified byte array.
*
*
* All subsequent elements are shifted to the left (subtracts one from their indices).
* If the array doesn't contains such an element, no elements are removed from the array.
* {@code null} will be returned if the input array is {@code null}.
*
*
* @param element the element to remove
* @param array the input array
*
* @return A new array containing the existing elements except the occurrences of the specified element.
* @since 3.5
* @deprecated Use {@link #removeAllOccurrences(byte[], byte)}
*/
public static byte[] removeAllOccurences(final byte[] array, final byte element) {
return (byte[]) removeAll((Object) array, indexesOf(array, element));
}
/**
* Removes the occurrences of the specified element from the specified char array.
*
*
* All subsequent elements are shifted to the left (subtracts one from their indices).
* If the array doesn't contains such an element, no elements are removed from the array.
* {@code null} will be returned if the input array is {@code null}.
*
*
* @param element the element to remove
* @param array the input array
*
* @return A new array containing the existing elements except the occurrences of the specified element.
* @since 3.5
* @deprecated Use {@link #removeAllOccurrences(char[], char)}
*/
public static char[] removeAllOccurences(final char[] array, final char element) {
return (char[]) removeAll((Object) array, indexesOf(array, element));
}
/**
* Removes the occurrences of the specified element from the specified double array.
*
*
* All subsequent elements are shifted to the left (subtracts one from their indices).
* If the array doesn't contains such an element, no elements are removed from the array.
* {@code null} will be returned if the input array is {@code null}.
*
*
* @param element the element to remove
* @param array the input array
*
* @return A new array containing the existing elements except the occurrences of the specified element.
* @since 3.5
* @deprecated Use {@link #removeAllOccurrences(double[], double)}
*/
public static double[] removeAllOccurences(final double[] array, final double element) {
return (double[]) removeAll((Object) array, indexesOf(array, element));
}
/**
* Removes the occurrences of the specified element from the specified float array.
*
*
* All subsequent elements are shifted to the left (subtracts one from their indices).
* If the array doesn't contains such an element, no elements are removed from the array.
* {@code null} will be returned if the input array is {@code null}.
*
*
* @param element the element to remove
* @param array the input array
*
* @return A new array containing the existing elements except the occurrences of the specified element.
* @since 3.5
* @deprecated Use {@link #removeAllOccurrences(float[], float)}
*/
public static float[] removeAllOccurences(final float[] array, final float element) {
return (float[]) removeAll((Object) array, indexesOf(array, element));
}
/**
* Removes the occurrences of the specified element from the specified int array.
*
*
* All subsequent elements are shifted to the left (subtracts one from their indices).
* If the array doesn't contains such an element, no elements are removed from the array.
* {@code null} will be returned if the input array is {@code null}.
*
*
* @param element the element to remove
* @param array the input array
*
* @return A new array containing the existing elements except the occurrences of the specified element.
* @since 3.5
* @deprecated Use {@link #removeAllOccurrences(int[], int)}
*/
public static int[] removeAllOccurences(final int[] array, final int element) {
return (int[]) removeAll((Object) array, indexesOf(array, element));
}
/**
* Removes the occurrences of the specified element from the specified long array.
*
*
* All subsequent elements are shifted to the left (subtracts one from their indices).
* If the array doesn't contains such an element, no elements are removed from the array.
* {@code null} will be returned if the input array is {@code null}.
*
*
* @param element the element to remove
* @param array the input array
*
* @return A new array containing the existing elements except the occurrences of the specified element.
* @since 3.5
* @deprecated Use {@link #removeAllOccurrences(long[], long)}
*/
public static long[] removeAllOccurences(final long[] array, final long element) {
return (long[]) removeAll((Object) array, indexesOf(array, element));
}
/**
* Removes the occurrences of the specified element from the specified short array.
*
*
* All subsequent elements are shifted to the left (subtracts one from their indices).
* If the array doesn't contains such an element, no elements are removed from the array.
* {@code null} will be returned if the input array is {@code null}.
*
*
* @param element the element to remove
* @param array the input array
*
* @return A new array containing the existing elements except the occurrences of the specified element.
* @since 3.5
* @deprecated Use {@link #removeAllOccurrences(short[], short)}
*/
public static short[] removeAllOccurences(final short[] array, final short element) {
return (short[]) removeAll((Object) array, indexesOf(array, element));
}
/**
* Removes the occurrences of the specified element from the specified array.
*
*
* All subsequent elements are shifted to the left (subtracts one from their indices).
* If the array doesn't contains such an element, no elements are removed from the array.
* {@code null} will be returned if the input array is {@code null}.
*
*
* @param the type of object in the array
* @param element the element to remove
* @param array the input array
*
* @return A new array containing the existing elements except the occurrences of the specified element.
* @since 3.5
* @deprecated Use {@link #removeAllOccurrences(Object[], Object)}
*/
public static T[] removeAllOccurences(final T[] array, final T element) {
return (T[]) removeAll((Object) array, indexesOf(array, element));
}
/**
* Removes the occurrences of the specified element from the specified boolean array.
*
*
* All subsequent elements are shifted to the left (subtracts one from their indices).
* If the array doesn't contains such an element, no elements are removed from the array.
* {@code null} will be returned if the input array is {@code null}.
*
*
* @param element the element to remove
* @param array the input array
*
* @return A new array containing the existing elements except the occurrences of the specified element.
* @since 3.10
*/
public static boolean[] removeAllOccurrences(final boolean[] array, final boolean element) {
return (boolean[]) removeAll((Object) array, indexesOf(array, element));
}
/**
* Removes the occurrences of the specified element from the specified byte array.
*
*
* All subsequent elements are shifted to the left (subtracts one from their indices).
* If the array doesn't contains such an element, no elements are removed from the array.
* {@code null} will be returned if the input array is {@code null}.
*
*
* @param element the element to remove
* @param array the input array
*
* @return A new array containing the existing elements except the occurrences of the specified element.
* @since 3.10
*/
public static byte[] removeAllOccurrences(final byte[] array, final byte element) {
return (byte[]) removeAll((Object) array, indexesOf(array, element));
}
/**
* Removes the occurrences of the specified element from the specified char array.
*
*
* All subsequent elements are shifted to the left (subtracts one from their indices).
* If the array doesn't contains such an element, no elements are removed from the array.
* {@code null} will be returned if the input array is {@code null}.
*
*
* @param element the element to remove
* @param array the input array
*
* @return A new array containing the existing elements except the occurrences of the specified element.
* @since 3.10
*/
public static char[] removeAllOccurrences(final char[] array, final char element) {
return (char[]) removeAll((Object) array, indexesOf(array, element));
}
/**
* Removes the occurrences of the specified element from the specified double array.
*
*
* All subsequent elements are shifted to the left (subtracts one from their indices).
* If the array doesn't contains such an element, no elements are removed from the array.
* {@code null} will be returned if the input array is {@code null}.
*
*
* @param element the element to remove
* @param array the input array
*
* @return A new array containing the existing elements except the occurrences of the specified element.
* @since 3.10
*/
public static double[] removeAllOccurrences(final double[] array, final double element) {
return (double[]) removeAll((Object) array, indexesOf(array, element));
}
/**
* Removes the occurrences of the specified element from the specified float array.
*
*
* All subsequent elements are shifted to the left (subtracts one from their indices).
* If the array doesn't contains such an element, no elements are removed from the array.
* {@code null} will be returned if the input array is {@code null}.
*
*
* @param element the element to remove
* @param array the input array
*
* @return A new array containing the existing elements except the occurrences of the specified element.
* @since 3.10
*/
public static float[] removeAllOccurrences(final float[] array, final float element) {
return (float[]) removeAll((Object) array, indexesOf(array, element));
}
/**
* Removes the occurrences of the specified element from the specified int array.
*
*
* All subsequent elements are shifted to the left (subtracts one from their indices).
* If the array doesn't contains such an element, no elements are removed from the array.
* {@code null} will be returned if the input array is {@code null}.
*
*
* @param element the element to remove
* @param array the input array
*
* @return A new array containing the existing elements except the occurrences of the specified element.
* @since 3.10
*/
public static int[] removeAllOccurrences(final int[] array, final int element) {
return (int[]) removeAll((Object) array, indexesOf(array, element));
}
/**
* Removes the occurrences of the specified element from the specified long array.
*
*
* All subsequent elements are shifted to the left (subtracts one from their indices).
* If the array doesn't contains such an element, no elements are removed from the array.
* {@code null} will be returned if the input array is {@code null}.
*
*
* @param element the element to remove
* @param array the input array
*
* @return A new array containing the existing elements except the occurrences of the specified element.
* @since 3.10
*/
public static long[] removeAllOccurrences(final long[] array, final long element) {
return (long[]) removeAll((Object) array, indexesOf(array, element));
}
/**
* Removes the occurrences of the specified element from the specified short array.
*
*
* All subsequent elements are shifted to the left (subtracts one from their indices).
* If the array doesn't contains such an element, no elements are removed from the array.
* {@code null} will be returned if the input array is {@code null}.
*
*
* @param element the element to remove
* @param array the input array
*
* @return A new array containing the existing elements except the occurrences of the specified element.
* @since 3.10
*/
public static short[] removeAllOccurrences(final short[] array, final short element) {
return (short[]) removeAll((Object) array, indexesOf(array, element));
}
/**
* Removes the occurrences of the specified element from the specified array.
*
*
* All subsequent elements are shifted to the left (subtracts one from their indices).
* If the array doesn't contains such an element, no elements are removed from the array.
* {@code null} will be returned if the input array is {@code null}.
*
*
* @param the type of object in the array
* @param element the element to remove
* @param array the input array
*
* @return A new array containing the existing elements except the occurrences of the specified element.
* @since 3.10
*/
public static T[] removeAllOccurrences(final T[] array, final T element) {
return (T[]) removeAll((Object) array, indexesOf(array, element));
}
/**
* Removes the first occurrence of the specified element from the
* specified array. All subsequent elements are shifted to the left
* (subtracts one from their indices). If the array doesn't contains
* such an element, no elements are removed from the array.
*
*
This method returns a new array with the same elements of the input
* array except the first occurrence of the specified element. The component
* type of the returned array is always the same as that of the input
* array.
*
*
* ArrayUtils.removeElement(null, true) = null
* ArrayUtils.removeElement([], true) = []
* ArrayUtils.removeElement([true], false) = [true]
* ArrayUtils.removeElement([true, false], false) = [true]
* ArrayUtils.removeElement([true, false, true], true) = [false, true]
*
*
* @param array the array to remove the element from, may be {@code null}
* @param element the element to be removed
* @return A new array containing the existing elements except the first
* occurrence of the specified element.
* @since 2.1
*/
public static boolean[] removeElement(final boolean[] array, final boolean element) {
final int index = indexOf(array, element);
if (index == INDEX_NOT_FOUND) {
return clone(array);
}
return remove(array, index);
}
/**
* Removes the first occurrence of the specified element from the
* specified array. All subsequent elements are shifted to the left
* (subtracts one from their indices). If the array doesn't contains
* such an element, no elements are removed from the array.
*
*
This method returns a new array with the same elements of the input
* array except the first occurrence of the specified element. The component
* type of the returned array is always the same as that of the input
* array.
*
*
* ArrayUtils.removeElement(null, 1) = null
* ArrayUtils.removeElement([], 1) = []
* ArrayUtils.removeElement([1], 0) = [1]
* ArrayUtils.removeElement([1, 0], 0) = [1]
* ArrayUtils.removeElement([1, 0, 1], 1) = [0, 1]
*
*
* @param array the array to remove the element from, may be {@code null}
* @param element the element to be removed
* @return A new array containing the existing elements except the first
* occurrence of the specified element.
* @since 2.1
*/
public static byte[] removeElement(final byte[] array, final byte element) {
final int index = indexOf(array, element);
if (index == INDEX_NOT_FOUND) {
return clone(array);
}
return remove(array, index);
}
/**
* Removes the first occurrence of the specified element from the
* specified array. All subsequent elements are shifted to the left
* (subtracts one from their indices). If the array doesn't contains
* such an element, no elements are removed from the array.
*
*
This method returns a new array with the same elements of the input
* array except the first occurrence of the specified element. The component
* type of the returned array is always the same as that of the input
* array.
*
*
* ArrayUtils.removeElement(null, 'a') = null
* ArrayUtils.removeElement([], 'a') = []
* ArrayUtils.removeElement(['a'], 'b') = ['a']
* ArrayUtils.removeElement(['a', 'b'], 'a') = ['b']
* ArrayUtils.removeElement(['a', 'b', 'a'], 'a') = ['b', 'a']
*
*
* @param array the array to remove the element from, may be {@code null}
* @param element the element to be removed
* @return A new array containing the existing elements except the first
* occurrence of the specified element.
* @since 2.1
*/
public static char[] removeElement(final char[] array, final char element) {
final int index = indexOf(array, element);
if (index == INDEX_NOT_FOUND) {
return clone(array);
}
return remove(array, index);
}
/**
* Removes the first occurrence of the specified element from the
* specified array. All subsequent elements are shifted to the left
* (subtracts one from their indices). If the array doesn't contains
* such an element, no elements are removed from the array.
*
*
This method returns a new array with the same elements of the input
* array except the first occurrence of the specified element. The component
* type of the returned array is always the same as that of the input
* array.
*
*
* ArrayUtils.removeElement(null, 1.1) = null
* ArrayUtils.removeElement([], 1.1) = []
* ArrayUtils.removeElement([1.1], 1.2) = [1.1]
* ArrayUtils.removeElement([1.1, 2.3], 1.1) = [2.3]
* ArrayUtils.removeElement([1.1, 2.3, 1.1], 1.1) = [2.3, 1.1]
*
*
* @param array the array to remove the element from, may be {@code null}
* @param element the element to be removed
* @return A new array containing the existing elements except the first
* occurrence of the specified element.
* @since 2.1
*/
public static double[] removeElement(final double[] array, final double element) {
final int index = indexOf(array, element);
if (index == INDEX_NOT_FOUND) {
return clone(array);
}
return remove(array, index);
}
/**
* Removes the first occurrence of the specified element from the
* specified array. All subsequent elements are shifted to the left
* (subtracts one from their indices). If the array doesn't contains
* such an element, no elements are removed from the array.
*
*
This method returns a new array with the same elements of the input
* array except the first occurrence of the specified element. The component
* type of the returned array is always the same as that of the input
* array.
*
*
* ArrayUtils.removeElement(null, 1.1) = null
* ArrayUtils.removeElement([], 1.1) = []
* ArrayUtils.removeElement([1.1], 1.2) = [1.1]
* ArrayUtils.removeElement([1.1, 2.3], 1.1) = [2.3]
* ArrayUtils.removeElement([1.1, 2.3, 1.1], 1.1) = [2.3, 1.1]
*
*
* @param array the array to remove the element from, may be {@code null}
* @param element the element to be removed
* @return A new array containing the existing elements except the first
* occurrence of the specified element.
* @since 2.1
*/
public static float[] removeElement(final float[] array, final float element) {
final int index = indexOf(array, element);
if (index == INDEX_NOT_FOUND) {
return clone(array);
}
return remove(array, index);
}
/**
* Removes the first occurrence of the specified element from the
* specified array. All subsequent elements are shifted to the left
* (subtracts one from their indices). If the array doesn't contains
* such an element, no elements are removed from the array.
*
*
This method returns a new array with the same elements of the input
* array except the first occurrence of the specified element. The component
* type of the returned array is always the same as that of the input
* array.
*
*
* ArrayUtils.removeElement(null, 1) = null
* ArrayUtils.removeElement([], 1) = []
* ArrayUtils.removeElement([1], 2) = [1]
* ArrayUtils.removeElement([1, 3], 1) = [3]
* ArrayUtils.removeElement([1, 3, 1], 1) = [3, 1]
*
*
* @param array the array to remove the element from, may be {@code null}
* @param element the element to be removed
* @return A new array containing the existing elements except the first
* occurrence of the specified element.
* @since 2.1
*/
public static int[] removeElement(final int[] array, final int element) {
final int index = indexOf(array, element);
if (index == INDEX_NOT_FOUND) {
return clone(array);
}
return remove(array, index);
}
/**
* Removes the first occurrence of the specified element from the
* specified array. All subsequent elements are shifted to the left
* (subtracts one from their indices). If the array doesn't contains
* such an element, no elements are removed from the array.
*
*
This method returns a new array with the same elements of the input
* array except the first occurrence of the specified element. The component
* type of the returned array is always the same as that of the input
* array.
*
*
* ArrayUtils.removeElement(null, 1) = null
* ArrayUtils.removeElement([], 1) = []
* ArrayUtils.removeElement([1], 2) = [1]
* ArrayUtils.removeElement([1, 3], 1) = [3]
* ArrayUtils.removeElement([1, 3, 1], 1) = [3, 1]
*
*
* @param array the array to remove the element from, may be {@code null}
* @param element the element to be removed
* @return A new array containing the existing elements except the first
* occurrence of the specified element.
* @since 2.1
*/
public static long[] removeElement(final long[] array, final long element) {
final int index = indexOf(array, element);
if (index == INDEX_NOT_FOUND) {
return clone(array);
}
return remove(array, index);
}
/**
* Removes the first occurrence of the specified element from the
* specified array. All subsequent elements are shifted to the left
* (subtracts one from their indices). If the array doesn't contains
* such an element, no elements are removed from the array.
*
*
This method returns a new array with the same elements of the input
* array except the first occurrence of the specified element. The component
* type of the returned array is always the same as that of the input
* array.
*
*
* ArrayUtils.removeElement(null, 1) = null
* ArrayUtils.removeElement([], 1) = []
* ArrayUtils.removeElement([1], 2) = [1]
* ArrayUtils.removeElement([1, 3], 1) = [3]
* ArrayUtils.removeElement([1, 3, 1], 1) = [3, 1]
*
*
* @param array the array to remove the element from, may be {@code null}
* @param element the element to be removed
* @return A new array containing the existing elements except the first
* occurrence of the specified element.
* @since 2.1
*/
public static short[] removeElement(final short[] array, final short element) {
final int index = indexOf(array, element);
if (index == INDEX_NOT_FOUND) {
return clone(array);
}
return remove(array, index);
}
/**
* Removes the first occurrence of the specified element from the
* specified array. All subsequent elements are shifted to the left
* (subtracts one from their indices). If the array doesn't contains
* such an element, no elements are removed from the array.
*
*
This method returns a new array with the same elements of the input
* array except the first occurrence of the specified element. The component
* type of the returned array is always the same as that of the input
* array.
*
*
* ArrayUtils.removeElement(null, "a") = null
* ArrayUtils.removeElement([], "a") = []
* ArrayUtils.removeElement(["a"], "b") = ["a"]
* ArrayUtils.removeElement(["a", "b"], "a") = ["b"]
* ArrayUtils.removeElement(["a", "b", "a"], "a") = ["b", "a"]
*
*
* @param the component type of the array
* @param array the array to remove the element from, may be {@code null}
* @param element the element to be removed
* @return A new array containing the existing elements except the first
* occurrence of the specified element.
* @since 2.1
*/
public static T[] removeElement(final T[] array, final Object element) {
final int index = indexOf(array, element);
if (index == INDEX_NOT_FOUND) {
return clone(array);
}
return remove(array, index);
}
/**
* Removes occurrences of specified elements, in specified quantities,
* from the specified array. All subsequent elements are shifted left.
* For any element-to-be-removed specified in greater quantities than
* contained in the original array, no change occurs beyond the
* removal of the existing matching items.
*
*
This method returns a new array with the same elements of the input
* array except for the earliest-encountered occurrences of the specified
* elements. The component type of the returned array is always the same
* as that of the input array.
*
*
* ArrayUtils.removeElements(null, true, false) = null
* ArrayUtils.removeElements([], true, false) = []
* ArrayUtils.removeElements([true], false, false) = [true]
* ArrayUtils.removeElements([true, false], true, true) = [false]
* ArrayUtils.removeElements([true, false, true], true) = [false, true]
* ArrayUtils.removeElements([true, false, true], true, true) = [false]
*
*
* @param array the array to remove the element from, may be {@code null}
* @param values the elements to be removed
* @return A new array containing the existing elements except the
* earliest-encountered occurrences of the specified elements.
* @since 3.0.1
*/
public static boolean[] removeElements(final boolean[] array, final boolean... values) {
if (isEmpty(array) || isEmpty(values)) {
return clone(array);
}
final HashMap occurrences = new HashMap<>(2); // only two possible values here
for (final boolean v : values) {
final Boolean boxed = Boolean.valueOf(v);
final MutableInt count = occurrences.get(boxed);
if (count == null) {
occurrences.put(boxed, new MutableInt(1));
} else {
count.increment();
}
}
final BitSet toRemove = new BitSet();
for (int i = 0; i < array.length; i++) {
final boolean key = array[i];
final MutableInt count = occurrences.get(key);
if (count != null) {
if (count.decrementAndGet() == 0) {
occurrences.remove(key);
}
toRemove.set(i);
}
}
return (boolean[]) removeAll(array, toRemove);
}
/**
* Removes occurrences of specified elements, in specified quantities,
* from the specified array. All subsequent elements are shifted left.
* For any element-to-be-removed specified in greater quantities than
* contained in the original array, no change occurs beyond the
* removal of the existing matching items.
*
*
This method returns a new array with the same elements of the input
* array except for the earliest-encountered occurrences of the specified
* elements. The component type of the returned array is always the same
* as that of the input array.
*
*
* ArrayUtils.removeElements(null, 1, 2) = null
* ArrayUtils.removeElements([], 1, 2) = []
* ArrayUtils.removeElements([1], 2, 3) = [1]
* ArrayUtils.removeElements([1, 3], 1, 2) = [3]
* ArrayUtils.removeElements([1, 3, 1], 1) = [3, 1]
* ArrayUtils.removeElements([1, 3, 1], 1, 1) = [3]
*
*
* @param array the array to remove the element from, may be {@code null}
* @param values the elements to be removed
* @return A new array containing the existing elements except the
* earliest-encountered occurrences of the specified elements.
* @since 3.0.1
*/
public static byte[] removeElements(final byte[] array, final byte... values) {
if (isEmpty(array) || isEmpty(values)) {
return clone(array);
}
final Map occurrences = new HashMap<>(values.length);
for (final byte v : values) {
final Byte boxed = Byte.valueOf(v);
final MutableInt count = occurrences.get(boxed);
if (count == null) {
occurrences.put(boxed, new MutableInt(1));
} else {
count.increment();
}
}
final BitSet toRemove = new BitSet();
for (int i = 0; i < array.length; i++) {
final byte key = array[i];
final MutableInt count = occurrences.get(key);
if (count != null) {
if (count.decrementAndGet() == 0) {
occurrences.remove(key);
}
toRemove.set(i);
}
}
return (byte[]) removeAll(array, toRemove);
}
/**
* Removes occurrences of specified elements, in specified quantities,
* from the specified array. All subsequent elements are shifted left.
* For any element-to-be-removed specified in greater quantities than
* contained in the original array, no change occurs beyond the
* removal of the existing matching items.
*
*
This method returns a new array with the same elements of the input
* array except for the earliest-encountered occurrences of the specified
* elements. The component type of the returned array is always the same
* as that of the input array.
*
*
* ArrayUtils.removeElements(null, 1, 2) = null
* ArrayUtils.removeElements([], 1, 2) = []
* ArrayUtils.removeElements([1], 2, 3) = [1]
* ArrayUtils.removeElements([1, 3], 1, 2) = [3]
* ArrayUtils.removeElements([1, 3, 1], 1) = [3, 1]
* ArrayUtils.removeElements([1, 3, 1], 1, 1) = [3]
*
*
* @param array the array to remove the element from, may be {@code null}
* @param values the elements to be removed
* @return A new array containing the existing elements except the
* earliest-encountered occurrences of the specified elements.
* @since 3.0.1
*/
public static char[] removeElements(final char[] array, final char... values) {
if (isEmpty(array) || isEmpty(values)) {
return clone(array);
}
final HashMap occurrences = new HashMap<>(values.length);
for (final char v : values) {
final Character boxed = Character.valueOf(v);
final MutableInt count = occurrences.get(boxed);
if (count == null) {
occurrences.put(boxed, new MutableInt(1));
} else {
count.increment();
}
}
final BitSet toRemove = new BitSet();
for (int i = 0; i < array.length; i++) {
final char key = array[i];
final MutableInt count = occurrences.get(key);
if (count != null) {
if (count.decrementAndGet() == 0) {
occurrences.remove(key);
}
toRemove.set(i);
}
}
return (char[]) removeAll(array, toRemove);
}
/**
* Removes occurrences of specified elements, in specified quantities,
* from the specified array. All subsequent elements are shifted left.
* For any element-to-be-removed specified in greater quantities than
* contained in the original array, no change occurs beyond the
* removal of the existing matching items.
*
*
This method returns a new array with the same elements of the input
* array except for the earliest-encountered occurrences of the specified
* elements. The component type of the returned array is always the same
* as that of the input array.
*
*
* ArrayUtils.removeElements(null, 1, 2) = null
* ArrayUtils.removeElements([], 1, 2) = []
* ArrayUtils.removeElements([1], 2, 3) = [1]
* ArrayUtils.removeElements([1, 3], 1, 2) = [3]
* ArrayUtils.removeElements([1, 3, 1], 1) = [3, 1]
* ArrayUtils.removeElements([1, 3, 1], 1, 1) = [3]
*
*
* @param array the array to remove the element from, may be {@code null}
* @param values the elements to be removed
* @return A new array containing the existing elements except the
* earliest-encountered occurrences of the specified elements.
* @since 3.0.1
*/
public static double[] removeElements(final double[] array, final double... values) {
if (isEmpty(array) || isEmpty(values)) {
return clone(array);
}
final HashMap occurrences = new HashMap<>(values.length);
for (final double v : values) {
final Double boxed = Double.valueOf(v);
final MutableInt count = occurrences.get(boxed);
if (count == null) {
occurrences.put(boxed, new MutableInt(1));
} else {
count.increment();
}
}
final BitSet toRemove = new BitSet();
for (int i = 0; i < array.length; i++) {
final double key = array[i];
final MutableInt count = occurrences.get(key);
if (count != null) {
if (count.decrementAndGet() == 0) {
occurrences.remove(key);
}
toRemove.set(i);
}
}
return (double[]) removeAll(array, toRemove);
}
/**
* Removes occurrences of specified elements, in specified quantities,
* from the specified array. All subsequent elements are shifted left.
* For any element-to-be-removed specified in greater quantities than
* contained in the original array, no change occurs beyond the
* removal of the existing matching items.
*
*
This method returns a new array with the same elements of the input
* array except for the earliest-encountered occurrences of the specified
* elements. The component type of the returned array is always the same
* as that of the input array.
*
*
* ArrayUtils.removeElements(null, 1, 2) = null
* ArrayUtils.removeElements([], 1, 2) = []
* ArrayUtils.removeElements([1], 2, 3) = [1]
* ArrayUtils.removeElements([1, 3], 1, 2) = [3]
* ArrayUtils.removeElements([1, 3, 1], 1) = [3, 1]
* ArrayUtils.removeElements([1, 3, 1], 1, 1) = [3]
*
*
* @param array the array to remove the element from, may be {@code null}
* @param values the elements to be removed
* @return A new array containing the existing elements except the
* earliest-encountered occurrences of the specified elements.
* @since 3.0.1
*/
public static float[] removeElements(final float[] array, final float... values) {
if (isEmpty(array) || isEmpty(values)) {
return clone(array);
}
final HashMap occurrences = new HashMap<>(values.length);
for (final float v : values) {
final Float boxed = Float.valueOf(v);
final MutableInt count = occurrences.get(boxed);
if (count == null) {
occurrences.put(boxed, new MutableInt(1));
} else {
count.increment();
}
}
final BitSet toRemove = new BitSet();
for (int i = 0; i < array.length; i++) {
final float key = array[i];
final MutableInt count = occurrences.get(key);
if (count != null) {
if (count.decrementAndGet() == 0) {
occurrences.remove(key);
}
toRemove.set(i);
}
}
return (float[]) removeAll(array, toRemove);
}
/**
* Removes occurrences of specified elements, in specified quantities,
* from the specified array. All subsequent elements are shifted left.
* For any element-to-be-removed specified in greater quantities than
* contained in the original array, no change occurs beyond the
* removal of the existing matching items.
*
*
This method returns a new array with the same elements of the input
* array except for the earliest-encountered occurrences of the specified
* elements. The component type of the returned array is always the same
* as that of the input array.
*
*
* ArrayUtils.removeElements(null, 1, 2) = null
* ArrayUtils.removeElements([], 1, 2) = []
* ArrayUtils.removeElements([1], 2, 3) = [1]
* ArrayUtils.removeElements([1, 3], 1, 2) = [3]
* ArrayUtils.removeElements([1, 3, 1], 1) = [3, 1]
* ArrayUtils.removeElements([1, 3, 1], 1, 1) = [3]
*
*
* @param array the array to remove the element from, may be {@code null}
* @param values the elements to be removed
* @return A new array containing the existing elements except the
* earliest-encountered occurrences of the specified elements.
* @since 3.0.1
*/
public static int[] removeElements(final int[] array, final int... values) {
if (isEmpty(array) || isEmpty(values)) {
return clone(array);
}
final HashMap occurrences = new HashMap<>(values.length);
for (final int v : values) {
final Integer boxed = Integer.valueOf(v);
final MutableInt count = occurrences.get(boxed);
if (count == null) {
occurrences.put(boxed, new MutableInt(1));
} else {
count.increment();
}
}
final BitSet toRemove = new BitSet();
for (int i = 0; i < array.length; i++) {
final int key = array[i];
final MutableInt count = occurrences.get(key);
if (count != null) {
if (count.decrementAndGet() == 0) {
occurrences.remove(key);
}
toRemove.set(i);
}
}
return (int[]) removeAll(array, toRemove);
}
/**
* Removes occurrences of specified elements, in specified quantities,
* from the specified array. All subsequent elements are shifted left.
* For any element-to-be-removed specified in greater quantities than
* contained in the original array, no change occurs beyond the
* removal of the existing matching items.
*
*
This method returns a new array with the same elements of the input
* array except for the earliest-encountered occurrences of the specified
* elements. The component type of the returned array is always the same
* as that of the input array.
*
*
* ArrayUtils.removeElements(null, 1, 2) = null
* ArrayUtils.removeElements([], 1, 2) = []
* ArrayUtils.removeElements([1], 2, 3) = [1]
* ArrayUtils.removeElements([1, 3], 1, 2) = [3]
* ArrayUtils.removeElements([1, 3, 1], 1) = [3, 1]
* ArrayUtils.removeElements([1, 3, 1], 1, 1) = [3]
*
*
* @param array the array to remove the element from, may be {@code null}
* @param values the elements to be removed
* @return A new array containing the existing elements except the
* earliest-encountered occurrences of the specified elements.
* @since 3.0.1
*/
public static long[] removeElements(final long[] array, final long... values) {
if (isEmpty(array) || isEmpty(values)) {
return clone(array);
}
final HashMap occurrences = new HashMap<>(values.length);
for (final long v : values) {
final Long boxed = Long.valueOf(v);
final MutableInt count = occurrences.get(boxed);
if (count == null) {
occurrences.put(boxed, new MutableInt(1));
} else {
count.increment();
}
}
final BitSet toRemove = new BitSet();
for (int i = 0; i < array.length; i++) {
final long key = array[i];
final MutableInt count = occurrences.get(key);
if (count != null) {
if (count.decrementAndGet() == 0) {
occurrences.remove(key);
}
toRemove.set(i);
}
}
return (long[]) removeAll(array, toRemove);
}
/**
* Removes occurrences of specified elements, in specified quantities,
* from the specified array. All subsequent elements are shifted left.
* For any element-to-be-removed specified in greater quantities than
* contained in the original array, no change occurs beyond the
* removal of the existing matching items.
*
*
This method returns a new array with the same elements of the input
* array except for the earliest-encountered occurrences of the specified
* elements. The component type of the returned array is always the same
* as that of the input array.
*
*
* ArrayUtils.removeElements(null, 1, 2) = null
* ArrayUtils.removeElements([], 1, 2) = []
* ArrayUtils.removeElements([1], 2, 3) = [1]
* ArrayUtils.removeElements([1, 3], 1, 2) = [3]
* ArrayUtils.removeElements([1, 3, 1], 1) = [3, 1]
* ArrayUtils.removeElements([1, 3, 1], 1, 1) = [3]
*
*
* @param array the array to remove the element from, may be {@code null}
* @param values the elements to be removed
* @return A new array containing the existing elements except the
* earliest-encountered occurrences of the specified elements.
* @since 3.0.1
*/
public static short[] removeElements(final short[] array, final short... values) {
if (isEmpty(array) || isEmpty(values)) {
return clone(array);
}
final HashMap occurrences = new HashMap<>(values.length);
for (final short v : values) {
final Short boxed = Short.valueOf(v);
final MutableInt count = occurrences.get(boxed);
if (count == null) {
occurrences.put(boxed, new MutableInt(1));
} else {
count.increment();
}
}
final BitSet toRemove = new BitSet();
for (int i = 0; i < array.length; i++) {
final short key = array[i];
final MutableInt count = occurrences.get(key);
if (count != null) {
if (count.decrementAndGet() == 0) {
occurrences.remove(key);
}
toRemove.set(i);
}
}
return (short[]) removeAll(array, toRemove);
}
/**
* Removes occurrences of specified elements, in specified quantities,
* from the specified array. All subsequent elements are shifted left.
* For any element-to-be-removed specified in greater quantities than
* contained in the original array, no change occurs beyond the
* removal of the existing matching items.
*
*
This method returns a new array with the same elements of the input
* array except for the earliest-encountered occurrences of the specified
* elements. The component type of the returned array is always the same
* as that of the input array.
*
*
* ArrayUtils.removeElements(null, "a", "b") = null
* ArrayUtils.removeElements([], "a", "b") = []
* ArrayUtils.removeElements(["a"], "b", "c") = ["a"]
* ArrayUtils.removeElements(["a", "b"], "a", "c") = ["b"]
* ArrayUtils.removeElements(["a", "b", "a"], "a") = ["b", "a"]
* ArrayUtils.removeElements(["a", "b", "a"], "a", "a") = ["b"]
*
*
* @param the component type of the array
* @param array the array to remove the element from, may be {@code null}
* @param values the elements to be removed
* @return A new array containing the existing elements except the
* earliest-encountered occurrences of the specified elements.
* @since 3.0.1
*/
@SafeVarargs
public static T[] removeElements(final T[] array, final T... values) {
if (isEmpty(array) || isEmpty(values)) {
return clone(array);
}
final HashMap occurrences = new HashMap<>(values.length);
for (final T v : values) {
final MutableInt count = occurrences.get(v);
if (count == null) {
occurrences.put(v, new MutableInt(1));
} else {
count.increment();
}
}
final BitSet toRemove = new BitSet();
for (int i = 0; i < array.length; i++) {
final T key = array[i];
final MutableInt count = occurrences.get(key);
if (count != null) {
if (count.decrementAndGet() == 0) {
occurrences.remove(key);
}
toRemove.set(i);
}
}
@SuppressWarnings("unchecked") // removeAll() always creates an array of the same type as its input
final T[] result = (T[]) removeAll(array, toRemove);
return result;
}
/**
* Reverses the order of the given array.
*
*
This method does nothing for a {@code null} input array.
*
* @param array the array to reverse, may be {@code null}
*/
public static void reverse(final boolean[] array) {
if (array == null) {
return;
}
reverse(array, 0, array.length);
}
/**
*
* Reverses the order of the given array in the given range.
*
*
* This method does nothing for a {@code null} input array.
*
* @param array
* the array to reverse, may be {@code null}
* @param startIndexInclusive
* the starting index. Undervalue (<0) is promoted to 0, overvalue (>array.length) results in no
* change.
* @param endIndexExclusive
* elements up to endIndex-1 are reversed in the array. Undervalue (< start index) results in no
* change. Overvalue (>array.length) is demoted to array length.
* @since 3.2
*/
public static void reverse(final boolean[] array, final int startIndexInclusive, final int endIndexExclusive) {
if (array == null) {
return;
}
int i = startIndexInclusive < 0 ? 0 : startIndexInclusive;
int j = Math.min(array.length, endIndexExclusive) - 1;
boolean tmp;
while (j > i) {
tmp = array[j];
array[j] = array[i];
array[i] = tmp;
j--;
i++;
}
}
/**
*
Reverses the order of the given array.
*
*
This method does nothing for a {@code null} input array.
*
* @param array the array to reverse, may be {@code null}
*/
public static void reverse(final byte[] array) {
if (array == null) {
return;
}
reverse(array, 0, array.length);
}
/**
*
* Reverses the order of the given array in the given range.
*
*
* This method does nothing for a {@code null} input array.
*
* @param array
* the array to reverse, may be {@code null}
* @param startIndexInclusive
* the starting index. Undervalue (<0) is promoted to 0, overvalue (>array.length) results in no
* change.
* @param endIndexExclusive
* elements up to endIndex-1 are reversed in the array. Undervalue (< start index) results in no
* change. Overvalue (>array.length) is demoted to array length.
* @since 3.2
*/
public static void reverse(final byte[] array, final int startIndexInclusive, final int endIndexExclusive) {
if (array == null) {
return;
}
int i = startIndexInclusive < 0 ? 0 : startIndexInclusive;
int j = Math.min(array.length, endIndexExclusive) - 1;
byte tmp;
while (j > i) {
tmp = array[j];
array[j] = array[i];
array[i] = tmp;
j--;
i++;
}
}
/**
*
Reverses the order of the given array.
*
*
This method does nothing for a {@code null} input array.
*
* @param array the array to reverse, may be {@code null}
*/
public static void reverse(final char[] array) {
if (array == null) {
return;
}
reverse(array, 0, array.length);
}
/**
*
* Reverses the order of the given array in the given range.
*
*
* This method does nothing for a {@code null} input array.
*
* @param array
* the array to reverse, may be {@code null}
* @param startIndexInclusive
* the starting index. Undervalue (<0) is promoted to 0, overvalue (>array.length) results in no
* change.
* @param endIndexExclusive
* elements up to endIndex-1 are reversed in the array. Undervalue (< start index) results in no
* change. Overvalue (>array.length) is demoted to array length.
* @since 3.2
*/
public static void reverse(final char[] array, final int startIndexInclusive, final int endIndexExclusive) {
if (array == null) {
return;
}
int i = startIndexInclusive < 0 ? 0 : startIndexInclusive;
int j = Math.min(array.length, endIndexExclusive) - 1;
char tmp;
while (j > i) {
tmp = array[j];
array[j] = array[i];
array[i] = tmp;
j--;
i++;
}
}
/**
*
Reverses the order of the given array.
*
*
This method does nothing for a {@code null} input array.
*
* @param array the array to reverse, may be {@code null}
*/
public static void reverse(final double[] array) {
if (array == null) {
return;
}
reverse(array, 0, array.length);
}
/**
*
* Reverses the order of the given array in the given range.
*
*
* This method does nothing for a {@code null} input array.
*
* @param array
* the array to reverse, may be {@code null}
* @param startIndexInclusive
* the starting index. Undervalue (<0) is promoted to 0, overvalue (>array.length) results in no
* change.
* @param endIndexExclusive
* elements up to endIndex-1 are reversed in the array. Undervalue (< start index) results in no
* change. Overvalue (>array.length) is demoted to array length.
* @since 3.2
*/
public static void reverse(final double[] array, final int startIndexInclusive, final int endIndexExclusive) {
if (array == null) {
return;
}
int i = startIndexInclusive < 0 ? 0 : startIndexInclusive;
int j = Math.min(array.length, endIndexExclusive) - 1;
double tmp;
while (j > i) {
tmp = array[j];
array[j] = array[i];
array[i] = tmp;
j--;
i++;
}
}
/**
*
Reverses the order of the given array.
*
*
This method does nothing for a {@code null} input array.
*
* @param array the array to reverse, may be {@code null}
*/
public static void reverse(final float[] array) {
if (array == null) {
return;
}
reverse(array, 0, array.length);
}
/**
*
* Reverses the order of the given array in the given range.
*
*
* This method does nothing for a {@code null} input array.
*
* @param array
* the array to reverse, may be {@code null}
* @param startIndexInclusive
* the starting index. Undervalue (<0) is promoted to 0, overvalue (>array.length) results in no
* change.
* @param endIndexExclusive
* elements up to endIndex-1 are reversed in the array. Undervalue (< start index) results in no
* change. Overvalue (>array.length) is demoted to array length.
* @since 3.2
*/
public static void reverse(final float[] array, final int startIndexInclusive, final int endIndexExclusive) {
if (array == null) {
return;
}
int i = startIndexInclusive < 0 ? 0 : startIndexInclusive;
int j = Math.min(array.length, endIndexExclusive) - 1;
float tmp;
while (j > i) {
tmp = array[j];
array[j] = array[i];
array[i] = tmp;
j--;
i++;
}
}
/**
*
Reverses the order of the given array.
*
*
This method does nothing for a {@code null} input array.
*
* @param array the array to reverse, may be {@code null}
*/
public static void reverse(final int[] array) {
if (array == null) {
return;
}
reverse(array, 0, array.length);
}
/**
*
* Reverses the order of the given array in the given range.
*
*
* This method does nothing for a {@code null} input array.
*
* @param array
* the array to reverse, may be {@code null}
* @param startIndexInclusive
* the starting index. Undervalue (<0) is promoted to 0, overvalue (>array.length) results in no
* change.
* @param endIndexExclusive
* elements up to endIndex-1 are reversed in the array. Undervalue (< start index) results in no
* change. Overvalue (>array.length) is demoted to array length.
* @since 3.2
*/
public static void reverse(final int[] array, final int startIndexInclusive, final int endIndexExclusive) {
if (array == null) {
return;
}
int i = startIndexInclusive < 0 ? 0 : startIndexInclusive;
int j = Math.min(array.length, endIndexExclusive) - 1;
int tmp;
while (j > i) {
tmp = array[j];
array[j] = array[i];
array[i] = tmp;
j--;
i++;
}
}
/**
*
Reverses the order of the given array.
*
*
This method does nothing for a {@code null} input array.
*
* @param array the array to reverse, may be {@code null}
*/
public static void reverse(final long[] array) {
if (array == null) {
return;
}
reverse(array, 0, array.length);
}
/**
*
* Reverses the order of the given array in the given range.
*
*
* This method does nothing for a {@code null} input array.
*
* @param array
* the array to reverse, may be {@code null}
* @param startIndexInclusive
* the starting index. Undervalue (<0) is promoted to 0, overvalue (>array.length) results in no
* change.
* @param endIndexExclusive
* elements up to endIndex-1 are reversed in the array. Undervalue (< start index) results in no
* change. Overvalue (>array.length) is demoted to array length.
* @since 3.2
*/
public static void reverse(final long[] array, final int startIndexInclusive, final int endIndexExclusive) {
if (array == null) {
return;
}
int i = startIndexInclusive < 0 ? 0 : startIndexInclusive;
int j = Math.min(array.length, endIndexExclusive) - 1;
long tmp;
while (j > i) {
tmp = array[j];
array[j] = array[i];
array[i] = tmp;
j--;
i++;
}
}
// Reverse
//-----------------------------------------------------------------------
/**
*
Reverses the order of the given array.
*
*
There is no special handling for multi-dimensional arrays.
*
*
This method does nothing for a {@code null} input array.
*
* @param array the array to reverse, may be {@code null}
*/
public static void reverse(final Object[] array) {
if (array == null) {
return;
}
reverse(array, 0, array.length);
}
/**
*
* Reverses the order of the given array in the given range.
*
*
* This method does nothing for a {@code null} input array.
*
* @param array
* the array to reverse, may be {@code null}
* @param startIndexInclusive
* the starting index. Under value (<0) is promoted to 0, over value (>array.length) results in no
* change.
* @param endIndexExclusive
* elements up to endIndex-1 are reversed in the array. Under value (< start index) results in no
* change. Over value (>array.length) is demoted to array length.
* @since 3.2
*/
public static void reverse(final Object[] array, final int startIndexInclusive, final int endIndexExclusive) {
if (array == null) {
return;
}
int i = startIndexInclusive < 0 ? 0 : startIndexInclusive;
int j = Math.min(array.length, endIndexExclusive) - 1;
Object tmp;
while (j > i) {
tmp = array[j];
array[j] = array[i];
array[i] = tmp;
j--;
i++;
}
}
/**
*
Reverses the order of the given array.
*
*
This method does nothing for a {@code null} input array.
*
* @param array the array to reverse, may be {@code null}
*/
public static void reverse(final short[] array) {
if (array == null) {
return;
}
reverse(array, 0, array.length);
}
/**
*
* Reverses the order of the given array in the given range.
*
*
* This method does nothing for a {@code null} input array.
*
* @param array
* the array to reverse, may be {@code null}
* @param startIndexInclusive
* the starting index. Undervalue (<0) is promoted to 0, overvalue (>array.length) results in no
* change.
* @param endIndexExclusive
* elements up to endIndex-1 are reversed in the array. Undervalue (< start index) results in no
* change. Overvalue (>array.length) is demoted to array length.
* @since 3.2
*/
public static void reverse(final short[] array, final int startIndexInclusive, final int endIndexExclusive) {
if (array == null) {
return;
}
int i = startIndexInclusive < 0 ? 0 : startIndexInclusive;
int j = Math.min(array.length, endIndexExclusive) - 1;
short tmp;
while (j > i) {
tmp = array[j];
array[j] = array[i];
array[i] = tmp;
j--;
i++;
}
}
/**
* Shifts the order of the given boolean array.
*
*
There is no special handling for multi-dimensional arrays. This method
* does nothing for {@code null} or empty input arrays.
*
* @param array the array to shift, may be {@code null}
* @param offset
* The number of positions to rotate the elements. If the offset is larger than the number of elements to
* rotate, than the effective offset is modulo the number of elements to rotate.
* @since 3.5
*/
public static void shift(final boolean[] array, final int offset) {
if (array == null) {
return;
}
shift(array, 0, array.length, offset);
}
/**
* Shifts the order of a series of elements in the given boolean array.
*
* There is no special handling for multi-dimensional arrays. This method
* does nothing for {@code null} or empty input arrays.
*
* @param array
* the array to shift, may be {@code null}
* @param startIndexInclusive
* the starting index. Undervalue (<0) is promoted to 0, overvalue (>array.length) results in no
* change.
* @param endIndexExclusive
* elements up to endIndex-1 are shifted in the array. Undervalue (< start index) results in no
* change. Overvalue (>array.length) is demoted to array length.
* @param offset
* The number of positions to rotate the elements. If the offset is larger than the number of elements to
* rotate, than the effective offset is modulo the number of elements to rotate.
* @since 3.5
*/
public static void shift(final boolean[] array, int startIndexInclusive, int endIndexExclusive, int offset) {
if (array == null) {
return;
}
if (startIndexInclusive >= array.length - 1 || endIndexExclusive <= 0) {
return;
}
if (startIndexInclusive < 0) {
startIndexInclusive = 0;
}
if (endIndexExclusive >= array.length) {
endIndexExclusive = array.length;
}
int n = endIndexExclusive - startIndexInclusive;
if (n <= 1) {
return;
}
offset %= n;
if (offset < 0) {
offset += n;
}
// For algorithm explanations and proof of O(n) time complexity and O(1) space complexity
// see https://beradrian.wordpress.com/2015/04/07/shift-an-array-in-on-in-place/
while (n > 1 && offset > 0) {
final int n_offset = n - offset;
if (offset > n_offset) {
swap(array, startIndexInclusive, startIndexInclusive + n - n_offset, n_offset);
n = offset;
offset -= n_offset;
} else if (offset < n_offset) {
swap(array, startIndexInclusive, startIndexInclusive + n_offset, offset);
startIndexInclusive += offset;
n = n_offset;
} else {
swap(array, startIndexInclusive, startIndexInclusive + n_offset, offset);
break;
}
}
}
/**
* Shifts the order of the given byte array.
*
* There is no special handling for multi-dimensional arrays. This method
* does nothing for {@code null} or empty input arrays.
*
* @param array the array to shift, may be {@code null}
* @param offset
* The number of positions to rotate the elements. If the offset is larger than the number of elements to
* rotate, than the effective offset is modulo the number of elements to rotate.
* @since 3.5
*/
public static void shift(final byte[] array, final int offset) {
if (array == null) {
return;
}
shift(array, 0, array.length, offset);
}
/**
* Shifts the order of a series of elements in the given byte array.
*
* There is no special handling for multi-dimensional arrays. This method
* does nothing for {@code null} or empty input arrays.
*
* @param array
* the array to shift, may be {@code null}
* @param startIndexInclusive
* the starting index. Undervalue (<0) is promoted to 0, overvalue (>array.length) results in no
* change.
* @param endIndexExclusive
* elements up to endIndex-1 are shifted in the array. Undervalue (< start index) results in no
* change. Overvalue (>array.length) is demoted to array length.
* @param offset
* The number of positions to rotate the elements. If the offset is larger than the number of elements to
* rotate, than the effective offset is modulo the number of elements to rotate.
* @since 3.5
*/
public static void shift(final byte[] array, int startIndexInclusive, int endIndexExclusive, int offset) {
if (array == null) {
return;
}
if (startIndexInclusive >= array.length - 1 || endIndexExclusive <= 0) {
return;
}
if (startIndexInclusive < 0) {
startIndexInclusive = 0;
}
if (endIndexExclusive >= array.length) {
endIndexExclusive = array.length;
}
int n = endIndexExclusive - startIndexInclusive;
if (n <= 1) {
return;
}
offset %= n;
if (offset < 0) {
offset += n;
}
// For algorithm explanations and proof of O(n) time complexity and O(1) space complexity
// see https://beradrian.wordpress.com/2015/04/07/shift-an-array-in-on-in-place/
while (n > 1 && offset > 0) {
final int n_offset = n - offset;
if (offset > n_offset) {
swap(array, startIndexInclusive, startIndexInclusive + n - n_offset, n_offset);
n = offset;
offset -= n_offset;
} else if (offset < n_offset) {
swap(array, startIndexInclusive, startIndexInclusive + n_offset, offset);
startIndexInclusive += offset;
n = n_offset;
} else {
swap(array, startIndexInclusive, startIndexInclusive + n_offset, offset);
break;
}
}
}
/**
* Shifts the order of the given char array.
*
* There is no special handling for multi-dimensional arrays. This method
* does nothing for {@code null} or empty input arrays.
*
* @param array the array to shift, may be {@code null}
* @param offset
* The number of positions to rotate the elements. If the offset is larger than the number of elements to
* rotate, than the effective offset is modulo the number of elements to rotate.
* @since 3.5
*/
public static void shift(final char[] array, final int offset) {
if (array == null) {
return;
}
shift(array, 0, array.length, offset);
}
/**
* Shifts the order of a series of elements in the given char array.
*
* There is no special handling for multi-dimensional arrays. This method
* does nothing for {@code null} or empty input arrays.
*
* @param array
* the array to shift, may be {@code null}
* @param startIndexInclusive
* the starting index. Undervalue (<0) is promoted to 0, overvalue (>array.length) results in no
* change.
* @param endIndexExclusive
* elements up to endIndex-1 are shifted in the array. Undervalue (< start index) results in no
* change. Overvalue (>array.length) is demoted to array length.
* @param offset
* The number of positions to rotate the elements. If the offset is larger than the number of elements to
* rotate, than the effective offset is modulo the number of elements to rotate.
* @since 3.5
*/
public static void shift(final char[] array, int startIndexInclusive, int endIndexExclusive, int offset) {
if (array == null) {
return;
}
if (startIndexInclusive >= array.length - 1 || endIndexExclusive <= 0) {
return;
}
if (startIndexInclusive < 0) {
startIndexInclusive = 0;
}
if (endIndexExclusive >= array.length) {
endIndexExclusive = array.length;
}
int n = endIndexExclusive - startIndexInclusive;
if (n <= 1) {
return;
}
offset %= n;
if (offset < 0) {
offset += n;
}
// For algorithm explanations and proof of O(n) time complexity and O(1) space complexity
// see https://beradrian.wordpress.com/2015/04/07/shift-an-array-in-on-in-place/
while (n > 1 && offset > 0) {
final int n_offset = n - offset;
if (offset > n_offset) {
swap(array, startIndexInclusive, startIndexInclusive + n - n_offset, n_offset);
n = offset;
offset -= n_offset;
} else if (offset < n_offset) {
swap(array, startIndexInclusive, startIndexInclusive + n_offset, offset);
startIndexInclusive += offset;
n = n_offset;
} else {
swap(array, startIndexInclusive, startIndexInclusive + n_offset, offset);
break;
}
}
}
/**
* Shifts the order of the given double array.
*
* There is no special handling for multi-dimensional arrays. This method
* does nothing for {@code null} or empty input arrays.
*
* @param array the array to shift, may be {@code null}
* @param offset
* The number of positions to rotate the elements. If the offset is larger than the number of elements to
* rotate, than the effective offset is modulo the number of elements to rotate.
* @since 3.5
*/
public static void shift(final double[] array, final int offset) {
if (array == null) {
return;
}
shift(array, 0, array.length, offset);
}
/**
* Shifts the order of a series of elements in the given double array.
*
* There is no special handling for multi-dimensional arrays. This method
* does nothing for {@code null} or empty input arrays.
*
* @param array
* the array to shift, may be {@code null}
* @param startIndexInclusive
* the starting index. Undervalue (<0) is promoted to 0, overvalue (>array.length) results in no
* change.
* @param endIndexExclusive
* elements up to endIndex-1 are shifted in the array. Undervalue (< start index) results in no
* change. Overvalue (>array.length) is demoted to array length.
* @param offset
* The number of positions to rotate the elements. If the offset is larger than the number of elements to
* rotate, than the effective offset is modulo the number of elements to rotate.
* @since 3.5
*/
public static void shift(final double[] array, int startIndexInclusive, int endIndexExclusive, int offset) {
if (array == null) {
return;
}
if (startIndexInclusive >= array.length - 1 || endIndexExclusive <= 0) {
return;
}
if (startIndexInclusive < 0) {
startIndexInclusive = 0;
}
if (endIndexExclusive >= array.length) {
endIndexExclusive = array.length;
}
int n = endIndexExclusive - startIndexInclusive;
if (n <= 1) {
return;
}
offset %= n;
if (offset < 0) {
offset += n;
}
// For algorithm explanations and proof of O(n) time complexity and O(1) space complexity
// see https://beradrian.wordpress.com/2015/04/07/shift-an-array-in-on-in-place/
while (n > 1 && offset > 0) {
final int n_offset = n - offset;
if (offset > n_offset) {
swap(array, startIndexInclusive, startIndexInclusive + n - n_offset, n_offset);
n = offset;
offset -= n_offset;
} else if (offset < n_offset) {
swap(array, startIndexInclusive, startIndexInclusive + n_offset, offset);
startIndexInclusive += offset;
n = n_offset;
} else {
swap(array, startIndexInclusive, startIndexInclusive + n_offset, offset);
break;
}
}
}
/**
* Shifts the order of the given float array.
*
* There is no special handling for multi-dimensional arrays. This method
* does nothing for {@code null} or empty input arrays.
*
* @param array the array to shift, may be {@code null}
* @param offset
* The number of positions to rotate the elements. If the offset is larger than the number of elements to
* rotate, than the effective offset is modulo the number of elements to rotate.
* @since 3.5
*/
public static void shift(final float[] array, final int offset) {
if (array == null) {
return;
}
shift(array, 0, array.length, offset);
}
/**
* Shifts the order of a series of elements in the given float array.
*
* There is no special handling for multi-dimensional arrays. This method
* does nothing for {@code null} or empty input arrays.
*
* @param array
* the array to shift, may be {@code null}
* @param startIndexInclusive
* the starting index. Undervalue (<0) is promoted to 0, overvalue (>array.length) results in no
* change.
* @param endIndexExclusive
* elements up to endIndex-1 are shifted in the array. Undervalue (< start index) results in no
* change. Overvalue (>array.length) is demoted to array length.
* @param offset
* The number of positions to rotate the elements. If the offset is larger than the number of elements to
* rotate, than the effective offset is modulo the number of elements to rotate.
* @since 3.5
*/
public static void shift(final float[] array, int startIndexInclusive, int endIndexExclusive, int offset) {
if (array == null) {
return;
}
if (startIndexInclusive >= array.length - 1 || endIndexExclusive <= 0) {
return;
}
if (startIndexInclusive < 0) {
startIndexInclusive = 0;
}
if (endIndexExclusive >= array.length) {
endIndexExclusive = array.length;
}
int n = endIndexExclusive - startIndexInclusive;
if (n <= 1) {
return;
}
offset %= n;
if (offset < 0) {
offset += n;
}
// For algorithm explanations and proof of O(n) time complexity and O(1) space complexity
// see https://beradrian.wordpress.com/2015/04/07/shift-an-array-in-on-in-place/
while (n > 1 && offset > 0) {
final int n_offset = n - offset;
if (offset > n_offset) {
swap(array, startIndexInclusive, startIndexInclusive + n - n_offset, n_offset);
n = offset;
offset -= n_offset;
} else if (offset < n_offset) {
swap(array, startIndexInclusive, startIndexInclusive + n_offset, offset);
startIndexInclusive += offset;
n = n_offset;
} else {
swap(array, startIndexInclusive, startIndexInclusive + n_offset, offset);
break;
}
}
}
/**
* Shifts the order of the given int array.
*
* There is no special handling for multi-dimensional arrays. This method
* does nothing for {@code null} or empty input arrays.
*
* @param array the array to shift, may be {@code null}
* @param offset
* The number of positions to rotate the elements. If the offset is larger than the number of elements to
* rotate, than the effective offset is modulo the number of elements to rotate.
* @since 3.5
*/
public static void shift(final int[] array, final int offset) {
if (array == null) {
return;
}
shift(array, 0, array.length, offset);
}
/**
* Shifts the order of a series of elements in the given int array.
*
* There is no special handling for multi-dimensional arrays. This method
* does nothing for {@code null} or empty input arrays.
*
* @param array
* the array to shift, may be {@code null}
* @param startIndexInclusive
* the starting index. Undervalue (<0) is promoted to 0, overvalue (>array.length) results in no
* change.
* @param endIndexExclusive
* elements up to endIndex-1 are shifted in the array. Undervalue (< start index) results in no
* change. Overvalue (>array.length) is demoted to array length.
* @param offset
* The number of positions to rotate the elements. If the offset is larger than the number of elements to
* rotate, than the effective offset is modulo the number of elements to rotate.
* @since 3.5
*/
public static void shift(final int[] array, int startIndexInclusive, int endIndexExclusive, int offset) {
if (array == null) {
return;
}
if (startIndexInclusive >= array.length - 1 || endIndexExclusive <= 0) {
return;
}
if (startIndexInclusive < 0) {
startIndexInclusive = 0;
}
if (endIndexExclusive >= array.length) {
endIndexExclusive = array.length;
}
int n = endIndexExclusive - startIndexInclusive;
if (n <= 1) {
return;
}
offset %= n;
if (offset < 0) {
offset += n;
}
// For algorithm explanations and proof of O(n) time complexity and O(1) space complexity
// see https://beradrian.wordpress.com/2015/04/07/shift-an-array-in-on-in-place/
while (n > 1 && offset > 0) {
final int n_offset = n - offset;
if (offset > n_offset) {
swap(array, startIndexInclusive, startIndexInclusive + n - n_offset, n_offset);
n = offset;
offset -= n_offset;
} else if (offset < n_offset) {
swap(array, startIndexInclusive, startIndexInclusive + n_offset, offset);
startIndexInclusive += offset;
n = n_offset;
} else {
swap(array, startIndexInclusive, startIndexInclusive + n_offset, offset);
break;
}
}
}
/**
* Shifts the order of the given long array.
*
* There is no special handling for multi-dimensional arrays. This method
* does nothing for {@code null} or empty input arrays.
*
* @param array the array to shift, may be {@code null}
* @param offset
* The number of positions to rotate the elements. If the offset is larger than the number of elements to
* rotate, than the effective offset is modulo the number of elements to rotate.
* @since 3.5
*/
public static void shift(final long[] array, final int offset) {
if (array == null) {
return;
}
shift(array, 0, array.length, offset);
}
/**
* Shifts the order of a series of elements in the given long array.
*
* There is no special handling for multi-dimensional arrays. This method
* does nothing for {@code null} or empty input arrays.
*
* @param array
* the array to shift, may be {@code null}
* @param startIndexInclusive
* the starting index. Undervalue (<0) is promoted to 0, overvalue (>array.length) results in no
* change.
* @param endIndexExclusive
* elements up to endIndex-1 are shifted in the array. Undervalue (< start index) results in no
* change. Overvalue (>array.length) is demoted to array length.
* @param offset
* The number of positions to rotate the elements. If the offset is larger than the number of elements to
* rotate, than the effective offset is modulo the number of elements to rotate.
* @since 3.5
*/
public static void shift(final long[] array, int startIndexInclusive, int endIndexExclusive, int offset) {
if (array == null) {
return;
}
if (startIndexInclusive >= array.length - 1 || endIndexExclusive <= 0) {
return;
}
if (startIndexInclusive < 0) {
startIndexInclusive = 0;
}
if (endIndexExclusive >= array.length) {
endIndexExclusive = array.length;
}
int n = endIndexExclusive - startIndexInclusive;
if (n <= 1) {
return;
}
offset %= n;
if (offset < 0) {
offset += n;
}
// For algorithm explanations and proof of O(n) time complexity and O(1) space complexity
// see https://beradrian.wordpress.com/2015/04/07/shift-an-array-in-on-in-place/
while (n > 1 && offset > 0) {
final int n_offset = n - offset;
if (offset > n_offset) {
swap(array, startIndexInclusive, startIndexInclusive + n - n_offset, n_offset);
n = offset;
offset -= n_offset;
} else if (offset < n_offset) {
swap(array, startIndexInclusive, startIndexInclusive + n_offset, offset);
startIndexInclusive += offset;
n = n_offset;
} else {
swap(array, startIndexInclusive, startIndexInclusive + n_offset, offset);
break;
}
}
}
// Shift
//-----------------------------------------------------------------------
/**
* Shifts the order of the given array.
*
* There is no special handling for multi-dimensional arrays. This method
* does nothing for {@code null} or empty input arrays.
*
* @param array the array to shift, may be {@code null}
* @param offset
* The number of positions to rotate the elements. If the offset is larger than the number of elements to
* rotate, than the effective offset is modulo the number of elements to rotate.
* @since 3.5
*/
public static void shift(final Object[] array, final int offset) {
if (array == null) {
return;
}
shift(array, 0, array.length, offset);
}
/**
* Shifts the order of a series of elements in the given array.
*
* There is no special handling for multi-dimensional arrays. This method
* does nothing for {@code null} or empty input arrays.
*
* @param array
* the array to shift, may be {@code null}
* @param startIndexInclusive
* the starting index. Undervalue (<0) is promoted to 0, overvalue (>array.length) results in no
* change.
* @param endIndexExclusive
* elements up to endIndex-1 are shifted in the array. Undervalue (< start index) results in no
* change. Overvalue (>array.length) is demoted to array length.
* @param offset
* The number of positions to rotate the elements. If the offset is larger than the number of elements to
* rotate, than the effective offset is modulo the number of elements to rotate.
* @since 3.5
*/
public static void shift(final Object[] array, int startIndexInclusive, int endIndexExclusive, int offset) {
if (array == null) {
return;
}
if (startIndexInclusive >= array.length - 1 || endIndexExclusive <= 0) {
return;
}
if (startIndexInclusive < 0) {
startIndexInclusive = 0;
}
if (endIndexExclusive >= array.length) {
endIndexExclusive = array.length;
}
int n = endIndexExclusive - startIndexInclusive;
if (n <= 1) {
return;
}
offset %= n;
if (offset < 0) {
offset += n;
}
// For algorithm explanations and proof of O(n) time complexity and O(1) space complexity
// see https://beradrian.wordpress.com/2015/04/07/shift-an-array-in-on-in-place/
while (n > 1 && offset > 0) {
final int n_offset = n - offset;
if (offset > n_offset) {
swap(array, startIndexInclusive, startIndexInclusive + n - n_offset, n_offset);
n = offset;
offset -= n_offset;
} else if (offset < n_offset) {
swap(array, startIndexInclusive, startIndexInclusive + n_offset, offset);
startIndexInclusive += offset;
n = n_offset;
} else {
swap(array, startIndexInclusive, startIndexInclusive + n_offset, offset);
break;
}
}
}
/**
* Shifts the order of the given short array.
*
* There is no special handling for multi-dimensional arrays. This method
* does nothing for {@code null} or empty input arrays.
*
* @param array the array to shift, may be {@code null}
* @param offset
* The number of positions to rotate the elements. If the offset is larger than the number of elements to
* rotate, than the effective offset is modulo the number of elements to rotate.
* @since 3.5
*/
public static void shift(final short[] array, final int offset) {
if (array == null) {
return;
}
shift(array, 0, array.length, offset);
}
/**
* Shifts the order of a series of elements in the given short array.
*
* There is no special handling for multi-dimensional arrays. This method
* does nothing for {@code null} or empty input arrays.
*
* @param array
* the array to shift, may be {@code null}
* @param startIndexInclusive
* the starting index. Undervalue (<0) is promoted to 0, overvalue (>array.length) results in no
* change.
* @param endIndexExclusive
* elements up to endIndex-1 are shifted in the array. Undervalue (< start index) results in no
* change. Overvalue (>array.length) is demoted to array length.
* @param offset
* The number of positions to rotate the elements. If the offset is larger than the number of elements to
* rotate, than the effective offset is modulo the number of elements to rotate.
* @since 3.5
*/
public static void shift(final short[] array, int startIndexInclusive, int endIndexExclusive, int offset) {
if (array == null) {
return;
}
if (startIndexInclusive >= array.length - 1 || endIndexExclusive <= 0) {
return;
}
if (startIndexInclusive < 0) {
startIndexInclusive = 0;
}
if (endIndexExclusive >= array.length) {
endIndexExclusive = array.length;
}
int n = endIndexExclusive - startIndexInclusive;
if (n <= 1) {
return;
}
offset %= n;
if (offset < 0) {
offset += n;
}
// For algorithm explanations and proof of O(n) time complexity and O(1) space complexity
// see https://beradrian.wordpress.com/2015/04/07/shift-an-array-in-on-in-place/
while (n > 1 && offset > 0) {
final int n_offset = n - offset;
if (offset > n_offset) {
swap(array, startIndexInclusive, startIndexInclusive + n - n_offset, n_offset);
n = offset;
offset -= n_offset;
} else if (offset < n_offset) {
swap(array, startIndexInclusive, startIndexInclusive + n_offset, offset);
startIndexInclusive += offset;
n = n_offset;
} else {
swap(array, startIndexInclusive, startIndexInclusive + n_offset, offset);
break;
}
}
}
/**
* Randomly permutes the elements of the specified array using the Fisher-Yates algorithm.
*
* @param array the array to shuffle
* @see Fisher-Yates shuffle algorithm
* @since 3.6
*/
public static void shuffle(final boolean[] array) {
shuffle(array, new Random());
}
/**
* Randomly permutes the elements of the specified array using the Fisher-Yates algorithm.
*
* @param array the array to shuffle
* @param random the source of randomness used to permute the elements
* @see Fisher-Yates shuffle algorithm
* @since 3.6
*/
public static void shuffle(final boolean[] array, final Random random) {
for (int i = array.length; i > 1; i--) {
swap(array, i - 1, random.nextInt(i), 1);
}
}
/**
* Randomly permutes the elements of the specified array using the Fisher-Yates algorithm.
*
* @param array the array to shuffle
* @see Fisher-Yates shuffle algorithm
* @since 3.6
*/
public static void shuffle(final byte[] array) {
shuffle(array, new Random());
}
/**
* Randomly permutes the elements of the specified array using the Fisher-Yates algorithm.
*
* @param array the array to shuffle
* @param random the source of randomness used to permute the elements
* @see Fisher-Yates shuffle algorithm
* @since 3.6
*/
public static void shuffle(final byte[] array, final Random random) {
for (int i = array.length; i > 1; i--) {
swap(array, i - 1, random.nextInt(i), 1);
}
}
/**
* Randomly permutes the elements of the specified array using the Fisher-Yates algorithm.
*
* @param array the array to shuffle
* @see Fisher-Yates shuffle algorithm
* @since 3.6
*/
public static void shuffle(final char[] array) {
shuffle(array, new Random());
}
/**
* Randomly permutes the elements of the specified array using the Fisher-Yates algorithm.
*
* @param array the array to shuffle
* @param random the source of randomness used to permute the elements
* @see Fisher-Yates shuffle algorithm
* @since 3.6
*/
public static void shuffle(final char[] array, final Random random) {
for (int i = array.length; i > 1; i--) {
swap(array, i - 1, random.nextInt(i), 1);
}
}
/**
* Randomly permutes the elements of the specified array using the Fisher-Yates algorithm.
*
* @param array the array to shuffle
* @see Fisher-Yates shuffle algorithm
* @since 3.6
*/
public static void shuffle(final double[] array) {
shuffle(array, new Random());
}
/**
* Randomly permutes the elements of the specified array using the Fisher-Yates algorithm.
*
* @param array the array to shuffle
* @param random the source of randomness used to permute the elements
* @see Fisher-Yates shuffle algorithm
* @since 3.6
*/
public static void shuffle(final double[] array, final Random random) {
for (int i = array.length; i > 1; i--) {
swap(array, i - 1, random.nextInt(i), 1);
}
}
/**
* Randomly permutes the elements of the specified array using the Fisher-Yates algorithm.
*
* @param array the array to shuffle
* @see Fisher-Yates shuffle algorithm
* @since 3.6
*/
public static void shuffle(final float[] array) {
shuffle(array, new Random());
}
/**
* Randomly permutes the elements of the specified array using the Fisher-Yates algorithm.
*
* @param array the array to shuffle
* @param random the source of randomness used to permute the elements
* @see Fisher-Yates shuffle algorithm
* @since 3.6
*/
public static void shuffle(final float[] array, final Random random) {
for (int i = array.length; i > 1; i--) {
swap(array, i - 1, random.nextInt(i), 1);
}
}
/**
* Randomly permutes the elements of the specified array using the Fisher-Yates algorithm.
*
* @param array the array to shuffle
* @see Fisher-Yates shuffle algorithm
* @since 3.6
*/
public static void shuffle(final int[] array) {
shuffle(array, new Random());
}
/**
* Randomly permutes the elements of the specified array using the Fisher-Yates algorithm.
*
* @param array the array to shuffle
* @param random the source of randomness used to permute the elements
* @see Fisher-Yates shuffle algorithm
* @since 3.6
*/
public static void shuffle(final int[] array, final Random random) {
for (int i = array.length; i > 1; i--) {
swap(array, i - 1, random.nextInt(i), 1);
}
}
/**
* Randomly permutes the elements of the specified array using the Fisher-Yates algorithm.
*
* @param array the array to shuffle
* @see Fisher-Yates shuffle algorithm
* @since 3.6
*/
public static void shuffle(final long[] array) {
shuffle(array, new Random());
}
/**
* Randomly permutes the elements of the specified array using the Fisher-Yates algorithm.
*
* @param array the array to shuffle
* @param random the source of randomness used to permute the elements
* @see Fisher-Yates shuffle algorithm
* @since 3.6
*/
public static void shuffle(final long[] array, final Random random) {
for (int i = array.length; i > 1; i--) {
swap(array, i - 1, random.nextInt(i), 1);
}
}
/**
* Randomly permutes the elements of the specified array using the Fisher-Yates algorithm.
*
* @param array the array to shuffle
* @see Fisher-Yates shuffle algorithm
* @since 3.6
*/
public static void shuffle(final Object[] array) {
shuffle(array, new Random());
}
/**
* Randomly permutes the elements of the specified array using the Fisher-Yates algorithm.
*
* @param array the array to shuffle
* @param random the source of randomness used to permute the elements
* @see Fisher-Yates shuffle algorithm
* @since 3.6
*/
public static void shuffle(final Object[] array, final Random random) {
for (int i = array.length; i > 1; i--) {
swap(array, i - 1, random.nextInt(i), 1);
}
}
/**
* Randomly permutes the elements of the specified array using the Fisher-Yates algorithm.
*
* @param array the array to shuffle
* @see Fisher-Yates shuffle algorithm
* @since 3.6
*/
public static void shuffle(final short[] array) {
shuffle(array, new Random());
}
/**
* Randomly permutes the elements of the specified array using the Fisher-Yates algorithm.
*
* @param array the array to shuffle
* @param random the source of randomness used to permute the elements
* @see Fisher-Yates shuffle algorithm
* @since 3.6
*/
public static void shuffle(final short[] array, final Random random) {
for (int i = array.length; i > 1; i--) {
swap(array, i - 1, random.nextInt(i), 1);
}
}
/**
* Produces a new {@code boolean} array containing the elements
* between the start and end indices.
*
*
The start index is inclusive, the end index exclusive.
* Null array input produces null output.
*
* @param array the array
* @param startIndexInclusive the starting index. Undervalue (<0)
* is promoted to 0, overvalue (>array.length) results
* in an empty array.
* @param endIndexExclusive elements up to endIndex-1 are present in the
* returned subarray. Undervalue (< startIndex) produces
* empty array, overvalue (>array.length) is demoted to
* array length.
* @return a new array containing the elements between
* the start and end indices.
* @since 2.1
* @see Arrays#copyOfRange(boolean[], int, int)
*/
public static boolean[] subarray(final boolean[] array, int startIndexInclusive, int endIndexExclusive) {
if (array == null) {
return null;
}
if (startIndexInclusive < 0) {
startIndexInclusive = 0;
}
if (endIndexExclusive > array.length) {
endIndexExclusive = array.length;
}
final int newSize = endIndexExclusive - startIndexInclusive;
if (newSize <= 0) {
return EMPTY_BOOLEAN_ARRAY;
}
final boolean[] subarray = new boolean[newSize];
System.arraycopy(array, startIndexInclusive, subarray, 0, newSize);
return subarray;
}
/**
*
Produces a new {@code byte} array containing the elements
* between the start and end indices.
*
*
The start index is inclusive, the end index exclusive.
* Null array input produces null output.
*
* @param array the array
* @param startIndexInclusive the starting index. Undervalue (<0)
* is promoted to 0, overvalue (>array.length) results
* in an empty array.
* @param endIndexExclusive elements up to endIndex-1 are present in the
* returned subarray. Undervalue (< startIndex) produces
* empty array, overvalue (>array.length) is demoted to
* array length.
* @return a new array containing the elements between
* the start and end indices.
* @since 2.1
* @see Arrays#copyOfRange(byte[], int, int)
*/
public static byte[] subarray(final byte[] array, int startIndexInclusive, int endIndexExclusive) {
if (array == null) {
return null;
}
if (startIndexInclusive < 0) {
startIndexInclusive = 0;
}
if (endIndexExclusive > array.length) {
endIndexExclusive = array.length;
}
final int newSize = endIndexExclusive - startIndexInclusive;
if (newSize <= 0) {
return EMPTY_BYTE_ARRAY;
}
final byte[] subarray = new byte[newSize];
System.arraycopy(array, startIndexInclusive, subarray, 0, newSize);
return subarray;
}
/**
*
Produces a new {@code char} array containing the elements
* between the start and end indices.
*
*
The start index is inclusive, the end index exclusive.
* Null array input produces null output.
*
* @param array the array
* @param startIndexInclusive the starting index. Undervalue (<0)
* is promoted to 0, overvalue (>array.length) results
* in an empty array.
* @param endIndexExclusive elements up to endIndex-1 are present in the
* returned subarray. Undervalue (< startIndex) produces
* empty array, overvalue (>array.length) is demoted to
* array length.
* @return a new array containing the elements between
* the start and end indices.
* @since 2.1
* @see Arrays#copyOfRange(char[], int, int)
*/
public static char[] subarray(final char[] array, int startIndexInclusive, int endIndexExclusive) {
if (array == null) {
return null;
}
if (startIndexInclusive < 0) {
startIndexInclusive = 0;
}
if (endIndexExclusive > array.length) {
endIndexExclusive = array.length;
}
final int newSize = endIndexExclusive - startIndexInclusive;
if (newSize <= 0) {
return EMPTY_CHAR_ARRAY;
}
final char[] subarray = new char[newSize];
System.arraycopy(array, startIndexInclusive, subarray, 0, newSize);
return subarray;
}
/**
*
Produces a new {@code double} array containing the elements
* between the start and end indices.
*
*
The start index is inclusive, the end index exclusive.
* Null array input produces null output.
*
* @param array the array
* @param startIndexInclusive the starting index. Undervalue (<0)
* is promoted to 0, overvalue (>array.length) results
* in an empty array.
* @param endIndexExclusive elements up to endIndex-1 are present in the
* returned subarray. Undervalue (< startIndex) produces
* empty array, overvalue (>array.length) is demoted to
* array length.
* @return a new array containing the elements between
* the start and end indices.
* @since 2.1
* @see Arrays#copyOfRange(double[], int, int)
*/
public static double[] subarray(final double[] array, int startIndexInclusive, int endIndexExclusive) {
if (array == null) {
return null;
}
if (startIndexInclusive < 0) {
startIndexInclusive = 0;
}
if (endIndexExclusive > array.length) {
endIndexExclusive = array.length;
}
final int newSize = endIndexExclusive - startIndexInclusive;
if (newSize <= 0) {
return EMPTY_DOUBLE_ARRAY;
}
final double[] subarray = new double[newSize];
System.arraycopy(array, startIndexInclusive, subarray, 0, newSize);
return subarray;
}
/**
*
Produces a new {@code float} array containing the elements
* between the start and end indices.
*
*
The start index is inclusive, the end index exclusive.
* Null array input produces null output.
*
* @param array the array
* @param startIndexInclusive the starting index. Undervalue (<0)
* is promoted to 0, overvalue (>array.length) results
* in an empty array.
* @param endIndexExclusive elements up to endIndex-1 are present in the
* returned subarray. Undervalue (< startIndex) produces
* empty array, overvalue (>array.length) is demoted to
* array length.
* @return a new array containing the elements between
* the start and end indices.
* @since 2.1
* @see Arrays#copyOfRange(float[], int, int)
*/
public static float[] subarray(final float[] array, int startIndexInclusive, int endIndexExclusive) {
if (array == null) {
return null;
}
if (startIndexInclusive < 0) {
startIndexInclusive = 0;
}
if (endIndexExclusive > array.length) {
endIndexExclusive = array.length;
}
final int newSize = endIndexExclusive - startIndexInclusive;
if (newSize <= 0) {
return EMPTY_FLOAT_ARRAY;
}
final float[] subarray = new float[newSize];
System.arraycopy(array, startIndexInclusive, subarray, 0, newSize);
return subarray;
}
/**
*
Produces a new {@code int} array containing the elements
* between the start and end indices.
*
*
The start index is inclusive, the end index exclusive.
* Null array input produces null output.
*
* @param array the array
* @param startIndexInclusive the starting index. Undervalue (<0)
* is promoted to 0, overvalue (>array.length) results
* in an empty array.
* @param endIndexExclusive elements up to endIndex-1 are present in the
* returned subarray. Undervalue (< startIndex) produces
* empty array, overvalue (>array.length) is demoted to
* array length.
* @return a new array containing the elements between
* the start and end indices.
* @since 2.1
* @see Arrays#copyOfRange(int[], int, int)
*/
public static int[] subarray(final int[] array, int startIndexInclusive, int endIndexExclusive) {
if (array == null) {
return null;
}
if (startIndexInclusive < 0) {
startIndexInclusive = 0;
}
if (endIndexExclusive > array.length) {
endIndexExclusive = array.length;
}
final int newSize = endIndexExclusive - startIndexInclusive;
if (newSize <= 0) {
return EMPTY_INT_ARRAY;
}
final int[] subarray = new int[newSize];
System.arraycopy(array, startIndexInclusive, subarray, 0, newSize);
return subarray;
}
/**
*
Produces a new {@code long} array containing the elements
* between the start and end indices.
*
*
The start index is inclusive, the end index exclusive.
* Null array input produces null output.
*
* @param array the array
* @param startIndexInclusive the starting index. Undervalue (<0)
* is promoted to 0, overvalue (>array.length) results
* in an empty array.
* @param endIndexExclusive elements up to endIndex-1 are present in the
* returned subarray. Undervalue (< startIndex) produces
* empty array, overvalue (>array.length) is demoted to
* array length.
* @return a new array containing the elements between
* the start and end indices.
* @since 2.1
* @see Arrays#copyOfRange(long[], int, int)
*/
public static long[] subarray(final long[] array, int startIndexInclusive, int endIndexExclusive) {
if (array == null) {
return null;
}
if (startIndexInclusive < 0) {
startIndexInclusive = 0;
}
if (endIndexExclusive > array.length) {
endIndexExclusive = array.length;
}
final int newSize = endIndexExclusive - startIndexInclusive;
if (newSize <= 0) {
return EMPTY_LONG_ARRAY;
}
final long[] subarray = new long[newSize];
System.arraycopy(array, startIndexInclusive, subarray, 0, newSize);
return subarray;
}
/**
*
Produces a new {@code short} array containing the elements
* between the start and end indices.
*
*
The start index is inclusive, the end index exclusive.
* Null array input produces null output.
*
* @param array the array
* @param startIndexInclusive the starting index. Undervalue (<0)
* is promoted to 0, overvalue (>array.length) results
* in an empty array.
* @param endIndexExclusive elements up to endIndex-1 are present in the
* returned subarray. Undervalue (< startIndex) produces
* empty array, overvalue (>array.length) is demoted to
* array length.
* @return a new array containing the elements between
* the start and end indices.
* @since 2.1
* @see Arrays#copyOfRange(short[], int, int)
*/
public static short[] subarray(final short[] array, int startIndexInclusive, int endIndexExclusive) {
if (array == null) {
return null;
}
if (startIndexInclusive < 0) {
startIndexInclusive = 0;
}
if (endIndexExclusive > array.length) {
endIndexExclusive = array.length;
}
final int newSize = endIndexExclusive - startIndexInclusive;
if (newSize <= 0) {
return EMPTY_SHORT_ARRAY;
}
final short[] subarray = new short[newSize];
System.arraycopy(array, startIndexInclusive, subarray, 0, newSize);
return subarray;
}
// Subarrays
//-----------------------------------------------------------------------
/**
*
Produces a new array containing the elements between
* the start and end indices.
*
*
The start index is inclusive, the end index exclusive.
* Null array input produces null output.
*
*
The component type of the subarray is always the same as
* that of the input array. Thus, if the input is an array of type
* {@code Date}, the following usage is envisaged:
*
*
* Date[] someDates = (Date[]) ArrayUtils.subarray(allDates, 2, 5);
*
*
* @param the component type of the array
* @param array the array
* @param startIndexInclusive the starting index. Undervalue (<0)
* is promoted to 0, overvalue (>array.length) results
* in an empty array.
* @param endIndexExclusive elements up to endIndex-1 are present in the
* returned subarray. Undervalue (< startIndex) produces
* empty array, overvalue (>array.length) is demoted to
* array length.
* @return a new array containing the elements between
* the start and end indices.
* @since 2.1
* @see Arrays#copyOfRange(Object[], int, int)
*/
public static T[] subarray(final T[] array, int startIndexInclusive, int endIndexExclusive) {
if (array == null) {
return null;
}
if (startIndexInclusive < 0) {
startIndexInclusive = 0;
}
if (endIndexExclusive > array.length) {
endIndexExclusive = array.length;
}
final int newSize = endIndexExclusive - startIndexInclusive;
final Class> type = array.getClass().getComponentType();
if (newSize <= 0) {
@SuppressWarnings("unchecked") // OK, because array is of type T
final T[] emptyArray = (T[]) Array.newInstance(type, 0);
return emptyArray;
}
@SuppressWarnings("unchecked") // OK, because array is of type T
final
T[] subarray = (T[]) Array.newInstance(type, newSize);
System.arraycopy(array, startIndexInclusive, subarray, 0, newSize);
return subarray;
}
/**
* Swaps two elements in the given boolean array.
*
* There is no special handling for multi-dimensional arrays. This method
* does nothing for a {@code null} or empty input array or for overflow indices.
* Negative indices are promoted to 0(zero).
*
* Examples:
*
* - ArrayUtils.swap([1, 2, 3], 0, 2) -> [3, 2, 1]
* - ArrayUtils.swap([1, 2, 3], 0, 0) -> [1, 2, 3]
* - ArrayUtils.swap([1, 2, 3], 1, 0) -> [2, 1, 3]
* - ArrayUtils.swap([1, 2, 3], 0, 5) -> [1, 2, 3]
* - ArrayUtils.swap([1, 2, 3], -1, 1) -> [2, 1, 3]
*
*
* @param array the array to swap, may be {@code null}
* @param offset1 the index of the first element to swap
* @param offset2 the index of the second element to swap
* @since 3.5
*/
public static void swap(final boolean[] array, final int offset1, final int offset2) {
if (isEmpty(array)) {
return;
}
swap(array, offset1, offset2, 1);
}
/**
* Swaps a series of elements in the given boolean array.
*
* This method does nothing for a {@code null} or empty input array or
* for overflow indices. Negative indices are promoted to 0(zero). If any
* of the sub-arrays to swap falls outside of the given array, then the
* swap is stopped at the end of the array and as many as possible elements
* are swapped.
*
* Examples:
*
* - ArrayUtils.swap([true, false, true, false], 0, 2, 1) -> [true, false, true, false]
* - ArrayUtils.swap([true, false, true, false], 0, 0, 1) -> [true, false, true, false]
* - ArrayUtils.swap([true, false, true, false], 0, 2, 2) -> [true, false, true, false]
* - ArrayUtils.swap([true, false, true, false], -3, 2, 2) -> [true, false, true, false]
* - ArrayUtils.swap([true, false, true, false], 0, 3, 3) -> [false, false, true, true]
*
*
* @param array the array to swap, may be {@code null}
* @param offset1 the index of the first element in the series to swap
* @param offset2 the index of the second element in the series to swap
* @param len the number of elements to swap starting with the given indices
* @since 3.5
*/
public static void swap(final boolean[] array, int offset1, int offset2, int len) {
if (isEmpty(array) || offset1 >= array.length || offset2 >= array.length) {
return;
}
if (offset1 < 0) {
offset1 = 0;
}
if (offset2 < 0) {
offset2 = 0;
}
len = Math.min(Math.min(len, array.length - offset1), array.length - offset2);
for (int i = 0; i < len; i++, offset1++, offset2++) {
final boolean aux = array[offset1];
array[offset1] = array[offset2];
array[offset2] = aux;
}
}
/**
* Swaps two elements in the given byte array.
*
* There is no special handling for multi-dimensional arrays. This method
* does nothing for a {@code null} or empty input array or for overflow indices.
* Negative indices are promoted to 0(zero).
*
* Examples:
*
* - ArrayUtils.swap([1, 2, 3], 0, 2) -> [3, 2, 1]
* - ArrayUtils.swap([1, 2, 3], 0, 0) -> [1, 2, 3]
* - ArrayUtils.swap([1, 2, 3], 1, 0) -> [2, 1, 3]
* - ArrayUtils.swap([1, 2, 3], 0, 5) -> [1, 2, 3]
* - ArrayUtils.swap([1, 2, 3], -1, 1) -> [2, 1, 3]
*
*
* @param array the array to swap, may be {@code null}
* @param offset1 the index of the first element to swap
* @param offset2 the index of the second element to swap
* @since 3.5
*/
public static void swap(final byte[] array, final int offset1, final int offset2) {
if (isEmpty(array)) {
return;
}
swap(array, offset1, offset2, 1);
}
/**
* Swaps a series of elements in the given byte array.
*
* This method does nothing for a {@code null} or empty input array or
* for overflow indices. Negative indices are promoted to 0(zero). If any
* of the sub-arrays to swap falls outside of the given array, then the
* swap is stopped at the end of the array and as many as possible elements
* are swapped.
*
* Examples:
*
* - ArrayUtils.swap([1, 2, 3, 4], 0, 2, 1) -> [3, 2, 1, 4]
* - ArrayUtils.swap([1, 2, 3, 4], 0, 0, 1) -> [1, 2, 3, 4]
* - ArrayUtils.swap([1, 2, 3, 4], 2, 0, 2) -> [3, 4, 1, 2]
* - ArrayUtils.swap([1, 2, 3, 4], -3, 2, 2) -> [3, 4, 1, 2]
* - ArrayUtils.swap([1, 2, 3, 4], 0, 3, 3) -> [4, 2, 3, 1]
*
*
* @param array the array to swap, may be {@code null}
* @param offset1 the index of the first element in the series to swap
* @param offset2 the index of the second element in the series to swap
* @param len the number of elements to swap starting with the given indices
* @since 3.5
*/
public static void swap(final byte[] array, int offset1, int offset2, int len) {
if (isEmpty(array) || offset1 >= array.length || offset2 >= array.length) {
return;
}
if (offset1 < 0) {
offset1 = 0;
}
if (offset2 < 0) {
offset2 = 0;
}
len = Math.min(Math.min(len, array.length - offset1), array.length - offset2);
for (int i = 0; i < len; i++, offset1++, offset2++) {
final byte aux = array[offset1];
array[offset1] = array[offset2];
array[offset2] = aux;
}
}
/**
* Swaps two elements in the given char array.
*
* There is no special handling for multi-dimensional arrays. This method
* does nothing for a {@code null} or empty input array or for overflow indices.
* Negative indices are promoted to 0(zero).
*
* Examples:
*
* - ArrayUtils.swap([1, 2, 3], 0, 2) -> [3, 2, 1]
* - ArrayUtils.swap([1, 2, 3], 0, 0) -> [1, 2, 3]
* - ArrayUtils.swap([1, 2, 3], 1, 0) -> [2, 1, 3]
* - ArrayUtils.swap([1, 2, 3], 0, 5) -> [1, 2, 3]
* - ArrayUtils.swap([1, 2, 3], -1, 1) -> [2, 1, 3]
*
*
* @param array the array to swap, may be {@code null}
* @param offset1 the index of the first element to swap
* @param offset2 the index of the second element to swap
* @since 3.5
*/
public static void swap(final char[] array, final int offset1, final int offset2) {
if (isEmpty(array)) {
return;
}
swap(array, offset1, offset2, 1);
}
/**
* Swaps a series of elements in the given char array.
*
* This method does nothing for a {@code null} or empty input array or
* for overflow indices. Negative indices are promoted to 0(zero). If any
* of the sub-arrays to swap falls outside of the given array, then the
* swap is stopped at the end of the array and as many as possible elements
* are swapped.
*
* Examples:
*
* - ArrayUtils.swap([1, 2, 3, 4], 0, 2, 1) -> [3, 2, 1, 4]
* - ArrayUtils.swap([1, 2, 3, 4], 0, 0, 1) -> [1, 2, 3, 4]
* - ArrayUtils.swap([1, 2, 3, 4], 2, 0, 2) -> [3, 4, 1, 2]
* - ArrayUtils.swap([1, 2, 3, 4], -3, 2, 2) -> [3, 4, 1, 2]
* - ArrayUtils.swap([1, 2, 3, 4], 0, 3, 3) -> [4, 2, 3, 1]
*
*
* @param array the array to swap, may be {@code null}
* @param offset1 the index of the first element in the series to swap
* @param offset2 the index of the second element in the series to swap
* @param len the number of elements to swap starting with the given indices
* @since 3.5
*/
public static void swap(final char[] array, int offset1, int offset2, int len) {
if (isEmpty(array) || offset1 >= array.length || offset2 >= array.length) {
return;
}
if (offset1 < 0) {
offset1 = 0;
}
if (offset2 < 0) {
offset2 = 0;
}
len = Math.min(Math.min(len, array.length - offset1), array.length - offset2);
for (int i = 0; i < len; i++, offset1++, offset2++) {
final char aux = array[offset1];
array[offset1] = array[offset2];
array[offset2] = aux;
}
}
/**
* Swaps two elements in the given double array.
*
* There is no special handling for multi-dimensional arrays. This method
* does nothing for a {@code null} or empty input array or for overflow indices.
* Negative indices are promoted to 0(zero).
*
* Examples:
*
* - ArrayUtils.swap([1, 2, 3], 0, 2) -> [3, 2, 1]
* - ArrayUtils.swap([1, 2, 3], 0, 0) -> [1, 2, 3]
* - ArrayUtils.swap([1, 2, 3], 1, 0) -> [2, 1, 3]
* - ArrayUtils.swap([1, 2, 3], 0, 5) -> [1, 2, 3]
* - ArrayUtils.swap([1, 2, 3], -1, 1) -> [2, 1, 3]
*
*
* @param array the array to swap, may be {@code null}
* @param offset1 the index of the first element to swap
* @param offset2 the index of the second element to swap
* @since 3.5
*/
public static void swap(final double[] array, final int offset1, final int offset2) {
if (isEmpty(array)) {
return;
}
swap(array, offset1, offset2, 1);
}
/**
* Swaps a series of elements in the given double array.
*
* This method does nothing for a {@code null} or empty input array or
* for overflow indices. Negative indices are promoted to 0(zero). If any
* of the sub-arrays to swap falls outside of the given array, then the
* swap is stopped at the end of the array and as many as possible elements
* are swapped.
*
* Examples:
*
* - ArrayUtils.swap([1, 2, 3, 4], 0, 2, 1) -> [3, 2, 1, 4]
* - ArrayUtils.swap([1, 2, 3, 4], 0, 0, 1) -> [1, 2, 3, 4]
* - ArrayUtils.swap([1, 2, 3, 4], 2, 0, 2) -> [3, 4, 1, 2]
* - ArrayUtils.swap([1, 2, 3, 4], -3, 2, 2) -> [3, 4, 1, 2]
* - ArrayUtils.swap([1, 2, 3, 4], 0, 3, 3) -> [4, 2, 3, 1]
*
*
* @param array the array to swap, may be {@code null}
* @param offset1 the index of the first element in the series to swap
* @param offset2 the index of the second element in the series to swap
* @param len the number of elements to swap starting with the given indices
* @since 3.5
*/
public static void swap(final double[] array, int offset1, int offset2, int len) {
if (isEmpty(array) || offset1 >= array.length || offset2 >= array.length) {
return;
}
if (offset1 < 0) {
offset1 = 0;
}
if (offset2 < 0) {
offset2 = 0;
}
len = Math.min(Math.min(len, array.length - offset1), array.length - offset2);
for (int i = 0; i < len; i++, offset1++, offset2++) {
final double aux = array[offset1];
array[offset1] = array[offset2];
array[offset2] = aux;
}
}
/**
* Swaps two elements in the given float array.
*
* There is no special handling for multi-dimensional arrays. This method
* does nothing for a {@code null} or empty input array or for overflow indices.
* Negative indices are promoted to 0(zero).
*
* Examples:
*
* - ArrayUtils.swap([1, 2, 3], 0, 2) -> [3, 2, 1]
* - ArrayUtils.swap([1, 2, 3], 0, 0) -> [1, 2, 3]
* - ArrayUtils.swap([1, 2, 3], 1, 0) -> [2, 1, 3]
* - ArrayUtils.swap([1, 2, 3], 0, 5) -> [1, 2, 3]
* - ArrayUtils.swap([1, 2, 3], -1, 1) -> [2, 1, 3]
*
*
* @param array the array to swap, may be {@code null}
* @param offset1 the index of the first element to swap
* @param offset2 the index of the second element to swap
* @since 3.5
*/
public static void swap(final float[] array, final int offset1, final int offset2) {
if (isEmpty(array)) {
return;
}
swap(array, offset1, offset2, 1);
}
/**
* Swaps a series of elements in the given float array.
*
* This method does nothing for a {@code null} or empty input array or
* for overflow indices. Negative indices are promoted to 0(zero). If any
* of the sub-arrays to swap falls outside of the given array, then the
* swap is stopped at the end of the array and as many as possible elements
* are swapped.
*
* Examples:
*
* - ArrayUtils.swap([1, 2, 3, 4], 0, 2, 1) -> [3, 2, 1, 4]
* - ArrayUtils.swap([1, 2, 3, 4], 0, 0, 1) -> [1, 2, 3, 4]
* - ArrayUtils.swap([1, 2, 3, 4], 2, 0, 2) -> [3, 4, 1, 2]
* - ArrayUtils.swap([1, 2, 3, 4], -3, 2, 2) -> [3, 4, 1, 2]
* - ArrayUtils.swap([1, 2, 3, 4], 0, 3, 3) -> [4, 2, 3, 1]
*
*
* @param array the array to swap, may be {@code null}
* @param offset1 the index of the first element in the series to swap
* @param offset2 the index of the second element in the series to swap
* @param len the number of elements to swap starting with the given indices
* @since 3.5
*/
public static void swap(final float[] array, int offset1, int offset2, int len) {
if (isEmpty(array) || offset1 >= array.length || offset2 >= array.length) {
return;
}
if (offset1 < 0) {
offset1 = 0;
}
if (offset2 < 0) {
offset2 = 0;
}
len = Math.min(Math.min(len, array.length - offset1), array.length - offset2);
for (int i = 0; i < len; i++, offset1++, offset2++) {
final float aux = array[offset1];
array[offset1] = array[offset2];
array[offset2] = aux;
}
}
/**
* Swaps two elements in the given int array.
*
* There is no special handling for multi-dimensional arrays. This method
* does nothing for a {@code null} or empty input array or for overflow indices.
* Negative indices are promoted to 0(zero).
*
* Examples:
*
* - ArrayUtils.swap([1, 2, 3], 0, 2) -> [3, 2, 1]
* - ArrayUtils.swap([1, 2, 3], 0, 0) -> [1, 2, 3]
* - ArrayUtils.swap([1, 2, 3], 1, 0) -> [2, 1, 3]
* - ArrayUtils.swap([1, 2, 3], 0, 5) -> [1, 2, 3]
* - ArrayUtils.swap([1, 2, 3], -1, 1) -> [2, 1, 3]
*
*
* @param array the array to swap, may be {@code null}
* @param offset1 the index of the first element to swap
* @param offset2 the index of the second element to swap
* @since 3.5
*/
public static void swap(final int[] array, final int offset1, final int offset2) {
if (isEmpty(array)) {
return;
}
swap(array, offset1, offset2, 1);
}
/**
* Swaps a series of elements in the given int array.
*
* This method does nothing for a {@code null} or empty input array or
* for overflow indices. Negative indices are promoted to 0(zero). If any
* of the sub-arrays to swap falls outside of the given array, then the
* swap is stopped at the end of the array and as many as possible elements
* are swapped.
*
* Examples:
*
* - ArrayUtils.swap([1, 2, 3, 4], 0, 2, 1) -> [3, 2, 1, 4]
* - ArrayUtils.swap([1, 2, 3, 4], 0, 0, 1) -> [1, 2, 3, 4]
* - ArrayUtils.swap([1, 2, 3, 4], 2, 0, 2) -> [3, 4, 1, 2]
* - ArrayUtils.swap([1, 2, 3, 4], -3, 2, 2) -> [3, 4, 1, 2]
* - ArrayUtils.swap([1, 2, 3, 4], 0, 3, 3) -> [4, 2, 3, 1]
*
*
* @param array the array to swap, may be {@code null}
* @param offset1 the index of the first element in the series to swap
* @param offset2 the index of the second element in the series to swap
* @param len the number of elements to swap starting with the given indices
* @since 3.5
*/
public static void swap(final int[] array, int offset1, int offset2, int len) {
if (isEmpty(array) || offset1 >= array.length || offset2 >= array.length) {
return;
}
if (offset1 < 0) {
offset1 = 0;
}
if (offset2 < 0) {
offset2 = 0;
}
len = Math.min(Math.min(len, array.length - offset1), array.length - offset2);
for (int i = 0; i < len; i++, offset1++, offset2++) {
final int aux = array[offset1];
array[offset1] = array[offset2];
array[offset2] = aux;
}
}
/**
* Swaps two elements in the given long array.
*
* There is no special handling for multi-dimensional arrays. This method
* does nothing for a {@code null} or empty input array or for overflow indices.
* Negative indices are promoted to 0(zero).
*
* Examples:
*
* - ArrayUtils.swap([true, false, true], 0, 2) -> [true, false, true]
* - ArrayUtils.swap([true, false, true], 0, 0) -> [true, false, true]
* - ArrayUtils.swap([true, false, true], 1, 0) -> [false, true, true]
* - ArrayUtils.swap([true, false, true], 0, 5) -> [true, false, true]
* - ArrayUtils.swap([true, false, true], -1, 1) -> [false, true, true]
*
*
*
* @param array the array to swap, may be {@code null}
* @param offset1 the index of the first element to swap
* @param offset2 the index of the second element to swap
* @since 3.5
*/
public static void swap(final long[] array, final int offset1, final int offset2) {
if (isEmpty(array)) {
return;
}
swap(array, offset1, offset2, 1);
}
/**
* Swaps a series of elements in the given long array.
*
* This method does nothing for a {@code null} or empty input array or
* for overflow indices. Negative indices are promoted to 0(zero). If any
* of the sub-arrays to swap falls outside of the given array, then the
* swap is stopped at the end of the array and as many as possible elements
* are swapped.
*
* Examples:
*
* - ArrayUtils.swap([1, 2, 3, 4], 0, 2, 1) -> [3, 2, 1, 4]
* - ArrayUtils.swap([1, 2, 3, 4], 0, 0, 1) -> [1, 2, 3, 4]
* - ArrayUtils.swap([1, 2, 3, 4], 2, 0, 2) -> [3, 4, 1, 2]
* - ArrayUtils.swap([1, 2, 3, 4], -3, 2, 2) -> [3, 4, 1, 2]
* - ArrayUtils.swap([1, 2, 3, 4], 0, 3, 3) -> [4, 2, 3, 1]
*
*
* @param array the array to swap, may be {@code null}
* @param offset1 the index of the first element in the series to swap
* @param offset2 the index of the second element in the series to swap
* @param len the number of elements to swap starting with the given indices
* @since 3.5
*/
public static void swap(final long[] array, int offset1, int offset2, int len) {
if (isEmpty(array) || offset1 >= array.length || offset2 >= array.length) {
return;
}
if (offset1 < 0) {
offset1 = 0;
}
if (offset2 < 0) {
offset2 = 0;
}
len = Math.min(Math.min(len, array.length - offset1), array.length - offset2);
for (int i = 0; i < len; i++, offset1++, offset2++) {
final long aux = array[offset1];
array[offset1] = array[offset2];
array[offset2] = aux;
}
}
// Swap
//-----------------------------------------------------------------------
/**
* Swaps two elements in the given array.
*
* There is no special handling for multi-dimensional arrays. This method
* does nothing for a {@code null} or empty input array or for overflow indices.
* Negative indices are promoted to 0(zero).
*
* Examples:
*
* - ArrayUtils.swap(["1", "2", "3"], 0, 2) -> ["3", "2", "1"]
* - ArrayUtils.swap(["1", "2", "3"], 0, 0) -> ["1", "2", "3"]
* - ArrayUtils.swap(["1", "2", "3"], 1, 0) -> ["2", "1", "3"]
* - ArrayUtils.swap(["1", "2", "3"], 0, 5) -> ["1", "2", "3"]
* - ArrayUtils.swap(["1", "2", "3"], -1, 1) -> ["2", "1", "3"]
*
*
* @param array the array to swap, may be {@code null}
* @param offset1 the index of the first element to swap
* @param offset2 the index of the second element to swap
* @since 3.5
*/
public static void swap(final Object[] array, final int offset1, final int offset2) {
if (isEmpty(array)) {
return;
}
swap(array, offset1, offset2, 1);
}
/**
* Swaps a series of elements in the given array.
*
* This method does nothing for a {@code null} or empty input array or
* for overflow indices. Negative indices are promoted to 0(zero). If any
* of the sub-arrays to swap falls outside of the given array, then the
* swap is stopped at the end of the array and as many as possible elements
* are swapped.
*
* Examples:
*
* - ArrayUtils.swap(["1", "2", "3", "4"], 0, 2, 1) -> ["3", "2", "1", "4"]
* - ArrayUtils.swap(["1", "2", "3", "4"], 0, 0, 1) -> ["1", "2", "3", "4"]
* - ArrayUtils.swap(["1", "2", "3", "4"], 2, 0, 2) -> ["3", "4", "1", "2"]
* - ArrayUtils.swap(["1", "2", "3", "4"], -3, 2, 2) -> ["3", "4", "1", "2"]
* - ArrayUtils.swap(["1", "2", "3", "4"], 0, 3, 3) -> ["4", "2", "3", "1"]
*
*
* @param array the array to swap, may be {@code null}
* @param offset1 the index of the first element in the series to swap
* @param offset2 the index of the second element in the series to swap
* @param len the number of elements to swap starting with the given indices
* @since 3.5
*/
public static void swap(final Object[] array, int offset1, int offset2, int len) {
if (isEmpty(array) || offset1 >= array.length || offset2 >= array.length) {
return;
}
if (offset1 < 0) {
offset1 = 0;
}
if (offset2 < 0) {
offset2 = 0;
}
len = Math.min(Math.min(len, array.length - offset1), array.length - offset2);
for (int i = 0; i < len; i++, offset1++, offset2++) {
final Object aux = array[offset1];
array[offset1] = array[offset2];
array[offset2] = aux;
}
}
/**
* Swaps two elements in the given short array.
*
* There is no special handling for multi-dimensional arrays. This method
* does nothing for a {@code null} or empty input array or for overflow indices.
* Negative indices are promoted to 0(zero).
*
* Examples:
*
* - ArrayUtils.swap([1, 2, 3], 0, 2) -> [3, 2, 1]
* - ArrayUtils.swap([1, 2, 3], 0, 0) -> [1, 2, 3]
* - ArrayUtils.swap([1, 2, 3], 1, 0) -> [2, 1, 3]
* - ArrayUtils.swap([1, 2, 3], 0, 5) -> [1, 2, 3]
* - ArrayUtils.swap([1, 2, 3], -1, 1) -> [2, 1, 3]
*
*
* @param array the array to swap, may be {@code null}
* @param offset1 the index of the first element to swap
* @param offset2 the index of the second element to swap
* @since 3.5
*/
public static void swap(final short[] array, final int offset1, final int offset2) {
if (isEmpty(array)) {
return;
}
swap(array, offset1, offset2, 1);
}
/**
* Swaps a series of elements in the given short array.
*
* This method does nothing for a {@code null} or empty input array or
* for overflow indices. Negative indices are promoted to 0(zero). If any
* of the sub-arrays to swap falls outside of the given array, then the
* swap is stopped at the end of the array and as many as possible elements
* are swapped.
*
* Examples:
*
* - ArrayUtils.swap([1, 2, 3, 4], 0, 2, 1) -> [3, 2, 1, 4]
* - ArrayUtils.swap([1, 2, 3, 4], 0, 0, 1) -> [1, 2, 3, 4]
* - ArrayUtils.swap([1, 2, 3, 4], 2, 0, 2) -> [3, 4, 1, 2]
* - ArrayUtils.swap([1, 2, 3, 4], -3, 2, 2) -> [3, 4, 1, 2]
* - ArrayUtils.swap([1, 2, 3, 4], 0, 3, 3) -> [4, 2, 3, 1]
*
*
* @param array the array to swap, may be {@code null}
* @param offset1 the index of the first element in the series to swap
* @param offset2 the index of the second element in the series to swap
* @param len the number of elements to swap starting with the given indices
* @since 3.5
*/
public static void swap(final short[] array, int offset1, int offset2, int len) {
if (isEmpty(array) || offset1 >= array.length || offset2 >= array.length) {
return;
}
if (offset1 < 0) {
offset1 = 0;
}
if (offset2 < 0) {
offset2 = 0;
}
if (offset1 == offset2) {
return;
}
len = Math.min(Math.min(len, array.length - offset1), array.length - offset2);
for (int i = 0; i < len; i++, offset1++, offset2++) {
final short aux = array[offset1];
array[offset1] = array[offset2];
array[offset2] = aux;
}
}
// Generic array
//-----------------------------------------------------------------------
/**
* Create a type-safe generic array.
*
*
The Java language does not allow an array to be created from a generic type:
*
*
public static <T> T[] createAnArray(int size) {
return new T[size]; // compiler error here
}
public static <T> T[] createAnArray(int size) {
return (T[]) new Object[size]; // ClassCastException at runtime
}
*
*
* Therefore new arrays of generic types can be created with this method.
* For example, an array of Strings can be created:
*
*
String[] array = ArrayUtils.toArray("1", "2");
String[] emptyArray = ArrayUtils.<String>toArray();
*
*
* The method is typically used in scenarios, where the caller itself uses generic types
* that have to be combined into an array.
*
*
Note, this method makes only sense to provide arguments of the same type so that the
* compiler can deduce the type of the array itself. While it is possible to select the
* type explicitly like in
* {@code Number[] array = ArrayUtils.<Number>toArray(Integer.valueOf(42), Double.valueOf(Math.PI))},
* there is no real advantage when compared to
* {@code new Number[] {Integer.valueOf(42), Double.valueOf(Math.PI)}}.
*
* @param the array's element type
* @param items the varargs array items, null allowed
* @return the array, not null unless a null array is passed in
* @since 3.0
*/
public static T[] toArray(@SuppressWarnings("unchecked") final T... items) {
return items;
}
// To map
//-----------------------------------------------------------------------
/**
* Converts the given array into a {@link java.util.Map}. Each element of the array
* must be either a {@link java.util.Map.Entry} or an Array, containing at least two
* elements, where the first element is used as key and the second as
* value.
*
*
This method can be used to initialize:
*
* // Create a Map mapping colors.
* Map colorMap = ArrayUtils.toMap(new String[][] {
* {"RED", "#FF0000"},
* {"GREEN", "#00FF00"},
* {"BLUE", "#0000FF"}});
*
*
* This method returns {@code null} for a {@code null} input array.
*
* @param array an array whose elements are either a {@link java.util.Map.Entry} or
* an Array containing at least two elements, may be {@code null}
* @return a {@code Map} that was created from the array
* @throws IllegalArgumentException if one element of this Array is
* itself an Array containing less then two elements
* @throws IllegalArgumentException if the array contains elements other
* than {@link java.util.Map.Entry} and an Array
*/
public static Map