All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.lang3.math.NumberUtils Maven / Gradle / Ivy

Go to download

Apache Commons Lang, a package of Java utility classes for the classes that are in java.lang's hierarchy, or are considered to be so standard as to justify existence in java.lang. The code is tested using the latest revision of the JDK for supported LTS releases: 8, 11, 17 and 21 currently. See https://github.com/apache/commons-lang/blob/master/.github/workflows/maven.yml Please ensure your build environment is up-to-date and kindly report any build issues.

There is a newer version: 3.17.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.lang3.math;

import java.lang.reflect.Array;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.RoundingMode;
import java.util.Objects;

import org.apache.commons.lang3.StringUtils;
import org.apache.commons.lang3.Validate;

/**
 * Provides extra functionality for Java Number classes.
 *
 * @since 2.0
 */
public class NumberUtils {

    /** Reusable Long constant for zero. */
    public static final Long LONG_ZERO = Long.valueOf(0L);
    /** Reusable Long constant for one. */
    public static final Long LONG_ONE = Long.valueOf(1L);
    /** Reusable Long constant for minus one. */
    public static final Long LONG_MINUS_ONE = Long.valueOf(-1L);
    /** Reusable Integer constant for zero. */
    public static final Integer INTEGER_ZERO = Integer.valueOf(0);
    /** Reusable Integer constant for one. */
    public static final Integer INTEGER_ONE = Integer.valueOf(1);
    /** Reusable Integer constant for two */
    public static final Integer INTEGER_TWO = Integer.valueOf(2);
    /** Reusable Integer constant for minus one. */
    public static final Integer INTEGER_MINUS_ONE = Integer.valueOf(-1);
    /** Reusable Short constant for zero. */
    public static final Short SHORT_ZERO = Short.valueOf((short) 0);
    /** Reusable Short constant for one. */
    public static final Short SHORT_ONE = Short.valueOf((short) 1);
    /** Reusable Short constant for minus one. */
    public static final Short SHORT_MINUS_ONE = Short.valueOf((short) -1);
    /** Reusable Byte constant for zero. */
    public static final Byte BYTE_ZERO = Byte.valueOf((byte) 0);
    /** Reusable Byte constant for one. */
    public static final Byte BYTE_ONE = Byte.valueOf((byte) 1);
    /** Reusable Byte constant for minus one. */
    public static final Byte BYTE_MINUS_ONE = Byte.valueOf((byte) -1);
    /** Reusable Double constant for zero. */
    public static final Double DOUBLE_ZERO = Double.valueOf(0.0d);
    /** Reusable Double constant for one. */
    public static final Double DOUBLE_ONE = Double.valueOf(1.0d);
    /** Reusable Double constant for minus one. */
    public static final Double DOUBLE_MINUS_ONE = Double.valueOf(-1.0d);
    /** Reusable Float constant for zero. */
    public static final Float FLOAT_ZERO = Float.valueOf(0.0f);
    /** Reusable Float constant for one. */
    public static final Float FLOAT_ONE = Float.valueOf(1.0f);
    /** Reusable Float constant for minus one. */
    public static final Float FLOAT_MINUS_ONE = Float.valueOf(-1.0f);

    /**
     * {@link Integer#MAX_VALUE} as a {@link Long}.
     *
     * @since 3.12.0
     */
    public static final Long LONG_INT_MAX_VALUE = Long.valueOf(Integer.MAX_VALUE);

    /**
     * {@link Integer#MIN_VALUE} as a {@link Long}.
     *
     * @since 3.12.0
     */
    public static final Long LONG_INT_MIN_VALUE = Long.valueOf(Integer.MIN_VALUE);


    /**
     * Compares two {@code byte} values numerically. This is the same functionality as provided in Java 7.
     *
     * @param x the first {@code byte} to compare
     * @param y the second {@code byte} to compare
     * @return the value {@code 0} if {@code x == y};
     *         a value less than {@code 0} if {@code x < y}; and
     *         a value greater than {@code 0} if {@code x > y}
     * @since 3.4
     */
    public static int compare(final byte x, final byte y) {
        return x - y;
    }

    /**
     * Compares two {@code int} values numerically. This is the same functionality as provided in Java 7.
     *
     * @param x the first {@code int} to compare
     * @param y the second {@code int} to compare
     * @return the value {@code 0} if {@code x == y};
     *         a value less than {@code 0} if {@code x < y}; and
     *         a value greater than {@code 0} if {@code x > y}
     * @since 3.4
     */
    public static int compare(final int x, final int y) {
        if (x == y) {
            return 0;
        }
        return x < y ? -1 : 1;
    }

    /**
     * Compares to {@code long} values numerically. This is the same functionality as provided in Java 7.
     *
     * @param x the first {@code long} to compare
     * @param y the second {@code long} to compare
     * @return the value {@code 0} if {@code x == y};
     *         a value less than {@code 0} if {@code x < y}; and
     *         a value greater than {@code 0} if {@code x > y}
     * @since 3.4
     */
    public static int compare(final long x, final long y) {
        if (x == y) {
            return 0;
        }
        return x < y ? -1 : 1;
    }

    /**
     * Compares to {@code short} values numerically. This is the same functionality as provided in Java 7.
     *
     * @param x the first {@code short} to compare
     * @param y the second {@code short} to compare
     * @return the value {@code 0} if {@code x == y};
     *         a value less than {@code 0} if {@code x < y}; and
     *         a value greater than {@code 0} if {@code x > y}
     * @since 3.4
     */
    public static int compare(final short x, final short y) {
        if (x == y) {
            return 0;
        }
        return x < y ? -1 : 1;
    }

    /**
     * Convert a {@link String} to a {@link BigDecimal}.
     *
     * 

Returns {@code null} if the string is {@code null}.

* * @param str a {@link String} to convert, may be null * @return converted {@link BigDecimal} (or null if the input is null) * @throws NumberFormatException if the value cannot be converted */ public static BigDecimal createBigDecimal(final String str) { if (str == null) { return null; } // handle JDK1.3.1 bug where "" throws IndexOutOfBoundsException if (StringUtils.isBlank(str)) { throw new NumberFormatException("A blank string is not a valid number"); } return new BigDecimal(str); } /** * Convert a {@link String} to a {@link BigInteger}; * since 3.2 it handles hexadecimal (0x or #) and octal (0) notations. * *

Returns {@code null} if the string is {@code null}.

* * @param str a {@link String} to convert, may be null * @return converted {@link BigInteger} (or null if the input is null) * @throws NumberFormatException if the value cannot be converted */ public static BigInteger createBigInteger(final String str) { if (str == null) { return null; } if (str.isEmpty()) { throw new NumberFormatException("An empty string is not a valid number"); } int pos = 0; // offset within string int radix = 10; boolean negate = false; // need to negate later? final char char0 = str.charAt(0); if (char0 == '-') { negate = true; pos = 1; } else if (char0 == '+') { pos = 1; } if (str.startsWith("0x", pos) || str.startsWith("0X", pos)) { // hex radix = 16; pos += 2; } else if (str.startsWith("#", pos)) { // alternative hex (allowed by Long/Integer) radix = 16; pos++; } else if (str.startsWith("0", pos) && str.length() > pos + 1) { // octal; so long as there are additional digits radix = 8; pos++; } // default is to treat as decimal final BigInteger value = new BigInteger(str.substring(pos), radix); return negate ? value.negate() : value; } /** * Convert a {@link String} to a {@link Double}. * *

Returns {@code null} if the string is {@code null}.

* * @param str a {@link String} to convert, may be null * @return converted {@link Double} (or null if the input is null) * @throws NumberFormatException if the value cannot be converted */ public static Double createDouble(final String str) { if (str == null) { return null; } return Double.valueOf(str); } /** * Convert a {@link String} to a {@link Float}. * *

Returns {@code null} if the string is {@code null}.

* * @param str a {@link String} to convert, may be null * @return converted {@link Float} (or null if the input is null) * @throws NumberFormatException if the value cannot be converted */ public static Float createFloat(final String str) { if (str == null) { return null; } return Float.valueOf(str); } /** * Convert a {@link String} to a {@link Integer}, handling * hexadecimal (0xhhhh) and octal (0dddd) notations. * N.B. a leading zero means octal; spaces are not trimmed. * *

Returns {@code null} if the string is {@code null}.

* * @param str a {@link String} to convert, may be null * @return converted {@link Integer} (or null if the input is null) * @throws NumberFormatException if the value cannot be converted */ public static Integer createInteger(final String str) { if (str == null) { return null; } // decode() handles 0xAABD and 0777 (hex and octal) as well. return Integer.decode(str); } /** * Convert a {@link String} to a {@link Long}; * since 3.1 it handles hexadecimal (0Xhhhh) and octal (0ddd) notations. * N.B. a leading zero means octal; spaces are not trimmed. * *

Returns {@code null} if the string is {@code null}.

* * @param str a {@link String} to convert, may be null * @return converted {@link Long} (or null if the input is null) * @throws NumberFormatException if the value cannot be converted */ public static Long createLong(final String str) { if (str == null) { return null; } return Long.decode(str); } /** * Turns a string value into a java.lang.Number. * *

If the string starts with {@code 0x} or {@code -0x} (lower or upper case) or {@code #} or {@code -#}, it * will be interpreted as a hexadecimal Integer - or Long, if the number of digits after the * prefix is more than 8 - or BigInteger if there are more than 16 digits. *

*

Then, the value is examined for a type qualifier on the end, i.e. one of * {@code 'f', 'F', 'd', 'D', 'l', 'L'}. If it is found, it starts * trying to create successively larger types from the type specified * until one is found that can represent the value.

* *

If a type specifier is not found, it will check for a decimal point * and then try successively larger types from {@link Integer} to * {@link BigInteger} and from {@link Float} to * {@link BigDecimal}.

* *

* Integral values with a leading {@code 0} will be interpreted as octal; the returned number will * be Integer, Long or BigDecimal as appropriate. *

* *

Returns {@code null} if the string is {@code null}.

* *

This method does not trim the input string, i.e., strings with leading * or trailing spaces will generate NumberFormatExceptions.

* * @param str String containing a number, may be null * @return Number created from the string (or null if the input is null) * @throws NumberFormatException if the value cannot be converted */ public static Number createNumber(final String str) { if (str == null) { return null; } if (StringUtils.isBlank(str)) { throw new NumberFormatException("A blank string is not a valid number"); } // Need to deal with all possible hex prefixes here final String[] hexPrefixes = {"0x", "0X", "#"}; final int length = str.length(); final int offset = str.charAt(0) == '+' || str.charAt(0) == '-' ? 1 : 0; int pfxLen = 0; for (final String pfx : hexPrefixes) { if (str.startsWith(pfx, offset)) { pfxLen += pfx.length() + offset; break; } } if (pfxLen > 0) { // we have a hex number char firstSigDigit = 0; // strip leading zeroes for (int i = pfxLen; i < length; i++) { firstSigDigit = str.charAt(i); if (firstSigDigit != '0') { break; } pfxLen++; } final int hexDigits = length - pfxLen; if (hexDigits > 16 || hexDigits == 16 && firstSigDigit > '7') { // too many for Long return createBigInteger(str); } if (hexDigits > 8 || hexDigits == 8 && firstSigDigit > '7') { // too many for an int return createLong(str); } return createInteger(str); } final char lastChar = str.charAt(length - 1); final String mant; final String dec; final String exp; final int decPos = str.indexOf('.'); final int expPos = str.indexOf('e') + str.indexOf('E') + 1; // assumes both not present // if both e and E are present, this is caught by the checks on expPos (which prevent IOOBE) // and the parsing which will detect if e or E appear in a number due to using the wrong offset // Detect if the return type has been requested final boolean requestType = !Character.isDigit(lastChar) && lastChar != '.'; if (decPos > -1) { // there is a decimal point if (expPos > -1) { // there is an exponent if (expPos < decPos || expPos > length) { // prevents double exponent causing IOOBE throw new NumberFormatException(str + " is not a valid number."); } dec = str.substring(decPos + 1, expPos); } else { // No exponent, but there may be a type character to remove dec = str.substring(decPos + 1, requestType ? length - 1 : length); } mant = getMantissa(str, decPos); } else { if (expPos > -1) { if (expPos > length) { // prevents double exponent causing IOOBE throw new NumberFormatException(str + " is not a valid number."); } mant = getMantissa(str, expPos); } else { // No decimal, no exponent, but there may be a type character to remove mant = getMantissa(str, requestType ? length - 1 : length); } dec = null; } if (requestType) { if (expPos > -1 && expPos < length - 1) { exp = str.substring(expPos + 1, length - 1); } else { exp = null; } //Requesting a specific type. final String numeric = str.substring(0, length - 1); switch (lastChar) { case 'l' : case 'L' : if (dec == null && exp == null && (!numeric.isEmpty() && numeric.charAt(0) == '-' && isDigits(numeric.substring(1)) || isDigits(numeric))) { try { return createLong(numeric); } catch (final NumberFormatException ignored) { // Too big for a long } return createBigInteger(numeric); } throw new NumberFormatException(str + " is not a valid number."); case 'f' : case 'F' : try { final Float f = createFloat(str); if (!(f.isInfinite() || f.floatValue() == 0.0F && !isZero(mant, dec))) { //If it's too big for a float or the float value = 0 and the string //has non-zeros in it, then float does not have the precision we want return f; } } catch (final NumberFormatException ignored) { // ignore the bad number } //$FALL-THROUGH$ case 'd' : case 'D' : try { final Double d = createDouble(str); if (!(d.isInfinite() || d.doubleValue() == 0.0D && !isZero(mant, dec))) { return d; } } catch (final NumberFormatException ignored) { // ignore the bad number } try { return createBigDecimal(numeric); } catch (final NumberFormatException ignored) { // ignore the bad number } //$FALL-THROUGH$ default : throw new NumberFormatException(str + " is not a valid number."); } } //User doesn't have a preference on the return type, so let's start //small and go from there... if (expPos > -1 && expPos < length - 1) { exp = str.substring(expPos + 1); } else { exp = null; } if (dec == null && exp == null) { // no decimal point and no exponent //Must be an Integer, Long, Biginteger try { return createInteger(str); } catch (final NumberFormatException ignored) { // ignore the bad number } try { return createLong(str); } catch (final NumberFormatException ignored) { // ignore the bad number } return createBigInteger(str); } //Must be a Float, Double, BigDecimal try { final Float f = createFloat(str); final Double d = createDouble(str); if (!f.isInfinite() && !(f.floatValue() == 0.0F && !isZero(mant, dec)) && f.toString().equals(d.toString())) { return f; } if (!d.isInfinite() && !(d.doubleValue() == 0.0D && !isZero(mant, dec))) { final BigDecimal b = createBigDecimal(str); if (b.compareTo(BigDecimal.valueOf(d.doubleValue())) == 0) { return d; } return b; } } catch (final NumberFormatException ignored) { // ignore the bad number } return createBigDecimal(str); } /** * Utility method for {@link #createNumber(java.lang.String)}. * *

Returns mantissa of the given number.

* * @param str the string representation of the number * @param stopPos the position of the exponent or decimal point * @return mantissa of the given number */ private static String getMantissa(final String str, final int stopPos) { final char firstChar = str.charAt(0); final boolean hasSign = firstChar == '-' || firstChar == '+'; return hasSign ? str.substring(1, stopPos) : str.substring(0, stopPos); } /** * Utility method for {@link #createNumber(java.lang.String)}. * *

Returns {@code true} if s is {@code null} or empty.

* * @param str the String to check * @return if it is all zeros or {@code null} */ private static boolean isAllZeros(final String str) { if (str == null) { return true; } for (int i = str.length() - 1; i >= 0; i--) { if (str.charAt(i) != '0') { return false; } } return true; } /** * Checks whether the String is a valid Java number. * *

Valid numbers include hexadecimal marked with the {@code 0x} or * {@code 0X} qualifier, octal numbers, scientific notation and * numbers marked with a type qualifier (e.g. 123L).

* *

Non-hexadecimal strings beginning with a leading zero are * treated as octal values. Thus the string {@code 09} will return * {@code false}, since {@code 9} is not a valid octal value. * However, numbers beginning with {@code 0.} are treated as decimal.

* *

{@code null} and empty/blank {@link String} will return * {@code false}.

* *

Note, {@link #createNumber(String)} should return a number for every * input resulting in {@code true}.

* * @param str the {@link String} to check * @return {@code true} if the string is a correctly formatted number * @since 3.5 */ public static boolean isCreatable(final String str) { if (StringUtils.isEmpty(str)) { return false; } final char[] chars = str.toCharArray(); int sz = chars.length; boolean hasExp = false; boolean hasDecPoint = false; boolean allowSigns = false; boolean foundDigit = false; // deal with any possible sign up front final int start = chars[0] == '-' || chars[0] == '+' ? 1 : 0; if (sz > start + 1 && chars[start] == '0' && !StringUtils.contains(str, '.')) { // leading 0, skip if is a decimal number if (chars[start + 1] == 'x' || chars[start + 1] == 'X') { // leading 0x/0X int i = start + 2; if (i == sz) { return false; // str == "0x" } // checking hex (it can't be anything else) for (; i < chars.length; i++) { if ((chars[i] < '0' || chars[i] > '9') && (chars[i] < 'a' || chars[i] > 'f') && (chars[i] < 'A' || chars[i] > 'F')) { return false; } } return true; } if (Character.isDigit(chars[start + 1])) { // leading 0, but not hex, must be octal int i = start + 1; for (; i < chars.length; i++) { if (chars[i] < '0' || chars[i] > '7') { return false; } } return true; } } sz--; // don't want to loop to the last char, check it afterwards // for type qualifiers int i = start; // loop to the next to last char or to the last char if we need another digit to // make a valid number (e.g. chars[0..5] = "1234E") while (i < sz || i < sz + 1 && allowSigns && !foundDigit) { if (chars[i] >= '0' && chars[i] <= '9') { foundDigit = true; allowSigns = false; } else if (chars[i] == '.') { if (hasDecPoint || hasExp) { // two decimal points or dec in exponent return false; } hasDecPoint = true; } else if (chars[i] == 'e' || chars[i] == 'E') { // we've already taken care of hex. if (hasExp) { // two E's return false; } if (!foundDigit) { return false; } hasExp = true; allowSigns = true; } else if (chars[i] == '+' || chars[i] == '-') { if (!allowSigns) { return false; } allowSigns = false; foundDigit = false; // we need a digit after the E } else { return false; } i++; } if (i < chars.length) { if (chars[i] >= '0' && chars[i] <= '9') { // no type qualifier, OK return true; } if (chars[i] == 'e' || chars[i] == 'E') { // can't have an E at the last byte return false; } if (chars[i] == '.') { if (hasDecPoint || hasExp) { // two decimal points or dec in exponent return false; } // single trailing decimal point after non-exponent is ok return foundDigit; } if (!allowSigns && (chars[i] == 'd' || chars[i] == 'D' || chars[i] == 'f' || chars[i] == 'F')) { return foundDigit; } if (chars[i] == 'l' || chars[i] == 'L') { // not allowing L with an exponent or decimal point return foundDigit && !hasExp && !hasDecPoint; } // last character is illegal return false; } // allowSigns is true iff the val ends in 'E' // found digit it to make sure weird stuff like '.' and '1E-' doesn't pass return !allowSigns && foundDigit; } /** * Checks whether the {@link String} contains only * digit characters. * *

{@code null} and empty String will return * {@code false}.

* * @param str the {@link String} to check * @return {@code true} if str contains only Unicode numeric */ public static boolean isDigits(final String str) { return StringUtils.isNumeric(str); } /** * Checks whether the String is a valid Java number. * *

Valid numbers include hexadecimal marked with the {@code 0x} or * {@code 0X} qualifier, octal numbers, scientific notation and * numbers marked with a type qualifier (e.g. 123L).

* *

Non-hexadecimal strings beginning with a leading zero are * treated as octal values. Thus the string {@code 09} will return * {@code false}, since {@code 9} is not a valid octal value. * However, numbers beginning with {@code 0.} are treated as decimal.

* *

{@code null} and empty/blank {@link String} will return * {@code false}.

* *

Note, {@link #createNumber(String)} should return a number for every * input resulting in {@code true}.

* * @param str the {@link String} to check * @return {@code true} if the string is a correctly formatted number * @since 3.3 the code supports hexadecimal {@code 0Xhhh} an * octal {@code 0ddd} validation * @deprecated This feature will be removed in Lang 4, * use {@link NumberUtils#isCreatable(String)} instead */ @Deprecated public static boolean isNumber(final String str) { return isCreatable(str); } /** * Checks whether the given String is a parsable number. * *

Parsable numbers include those Strings understood by {@link Integer#parseInt(String)}, * {@link Long#parseLong(String)}, {@link Float#parseFloat(String)} or * {@link Double#parseDouble(String)}. This method can be used instead of catching {@link java.text.ParseException} * when calling one of those methods.

* *

Hexadecimal and scientific notations are not considered parsable. * See {@link #isCreatable(String)} on those cases.

* *

{@code null} and empty String will return {@code false}.

* * @param str the String to check. * @return {@code true} if the string is a parsable number. * @since 3.4 */ public static boolean isParsable(final String str) { if (StringUtils.isEmpty(str)) { return false; } if (str.charAt(str.length() - 1) == '.') { return false; } if (str.charAt(0) == '-') { if (str.length() == 1) { return false; } return withDecimalsParsing(str, 1); } return withDecimalsParsing(str, 0); } /** * Utility method for {@link #createNumber(java.lang.String)}. * *

This will check if the magnitude of the number is zero by checking if there * are only zeros before and after the decimal place.

* *

Note: It is assumed that the input string has been converted * to either a Float or Double with a value of zero when this method is called. * This eliminates invalid input for example {@code ".", ".D", ".e0"}.

* *

Thus the method only requires checking if both arguments are null, empty or * contain only zeros.

* *

Given {@code s = mant + "." + dec}:

*
    *
  • {@code true} if s is {@code "0.0"} *
  • {@code true} if s is {@code "0."} *
  • {@code true} if s is {@code ".0"} *
  • {@code false} otherwise (this assumes {@code "."} is not possible) *
* * @param mant the mantissa decimal digits before the decimal point (sign must be removed; never null) * @param dec the decimal digits after the decimal point (exponent and type specifier removed; * can be null) * @return true if the magnitude is zero */ private static boolean isZero(final String mant, final String dec) { return isAllZeros(mant) && isAllZeros(dec); } /** * Returns the maximum value in an array. * * @param array an array, must not be null or empty * @return the maximum value in the array * @throws NullPointerException if {@code array} is {@code null} * @throws IllegalArgumentException if {@code array} is empty * @since 3.4 Changed signature from max(byte[]) to max(byte...) */ public static byte max(final byte... array) { // Validates input validateArray(array); // Finds and returns max byte max = array[0]; for (int i = 1; i < array.length; i++) { if (array[i] > max) { max = array[i]; } } return max; } /** * Gets the maximum of three {@code byte} values. * * @param a value 1 * @param b value 2 * @param c value 3 * @return the largest of the values */ public static byte max(byte a, final byte b, final byte c) { if (b > a) { a = b; } if (c > a) { a = c; } return a; } /** * Returns the maximum value in an array. * * @param array an array, must not be null or empty * @return the maximum value in the array * @throws NullPointerException if {@code array} is {@code null} * @throws IllegalArgumentException if {@code array} is empty * @see IEEE754rUtils#max(double[]) IEEE754rUtils for a version of this method that handles NaN differently * @since 3.4 Changed signature from max(double[]) to max(double...) */ public static double max(final double... array) { // Validates input validateArray(array); // Finds and returns max double max = array[0]; for (int j = 1; j < array.length; j++) { if (Double.isNaN(array[j])) { return Double.NaN; } if (array[j] > max) { max = array[j]; } } return max; } /** * Gets the maximum of three {@code double} values. * *

If any value is {@code NaN}, {@code NaN} is * returned. Infinity is handled.

* * @param a value 1 * @param b value 2 * @param c value 3 * @return the largest of the values * @see IEEE754rUtils#max(double, double, double) for a version of this method that handles NaN differently */ public static double max(final double a, final double b, final double c) { return Math.max(Math.max(a, b), c); } /** * Returns the maximum value in an array. * * @param array an array, must not be null or empty * @return the maximum value in the array * @throws NullPointerException if {@code array} is {@code null} * @throws IllegalArgumentException if {@code array} is empty * @see IEEE754rUtils#max(float[]) IEEE754rUtils for a version of this method that handles NaN differently * @since 3.4 Changed signature from max(float[]) to max(float...) */ public static float max(final float... array) { // Validates input validateArray(array); // Finds and returns max float max = array[0]; for (int j = 1; j < array.length; j++) { if (Float.isNaN(array[j])) { return Float.NaN; } if (array[j] > max) { max = array[j]; } } return max; } // must handle Long, Float, Integer, Float, Short, // BigDecimal, BigInteger and Byte // useful methods: // Byte.decode(String) // Byte.valueOf(String, int radix) // Byte.valueOf(String) // Double.valueOf(String) // Float.valueOf(String) // Float.valueOf(String) // Integer.valueOf(String, int radix) // Integer.valueOf(String) // Integer.decode(String) // Integer.getInteger(String) // Integer.getInteger(String, int val) // Integer.getInteger(String, Integer val) // Integer.valueOf(String) // Double.valueOf(String) // new Byte(String) // Long.valueOf(String) // Long.getLong(String) // Long.getLong(String, int) // Long.getLong(String, Integer) // Long.valueOf(String, int) // Long.valueOf(String) // Short.valueOf(String) // Short.decode(String) // Short.valueOf(String, int) // Short.valueOf(String) // new BigDecimal(String) // new BigInteger(String) // new BigInteger(String, int radix) // Possible inputs: // 45 45.5 45E7 4.5E7 Hex Oct Binary xxxF xxxD xxxf xxxd // plus minus everything. Prolly more. A lot are not separable. /** * Gets the maximum of three {@code float} values. * *

If any value is {@code NaN}, {@code NaN} is * returned. Infinity is handled.

* * @param a value 1 * @param b value 2 * @param c value 3 * @return the largest of the values * @see IEEE754rUtils#max(float, float, float) for a version of this method that handles NaN differently */ public static float max(final float a, final float b, final float c) { return Math.max(Math.max(a, b), c); } /** * Returns the maximum value in an array. * * @param array an array, must not be null or empty * @return the maximum value in the array * @throws NullPointerException if {@code array} is {@code null} * @throws IllegalArgumentException if {@code array} is empty * @since 3.4 Changed signature from max(int[]) to max(int...) */ public static int max(final int... array) { // Validates input validateArray(array); // Finds and returns max int max = array[0]; for (int j = 1; j < array.length; j++) { if (array[j] > max) { max = array[j]; } } return max; } /** * Gets the maximum of three {@code int} values. * * @param a value 1 * @param b value 2 * @param c value 3 * @return the largest of the values */ public static int max(int a, final int b, final int c) { if (b > a) { a = b; } if (c > a) { a = c; } return a; } /** * Returns the maximum value in an array. * * @param array an array, must not be null or empty * @return the maximum value in the array * @throws NullPointerException if {@code array} is {@code null} * @throws IllegalArgumentException if {@code array} is empty * @since 3.4 Changed signature from max(long[]) to max(long...) */ public static long max(final long... array) { // Validates input validateArray(array); // Finds and returns max long max = array[0]; for (int j = 1; j < array.length; j++) { if (array[j] > max) { max = array[j]; } } return max; } // 3 param max /** * Gets the maximum of three {@code long} values. * * @param a value 1 * @param b value 2 * @param c value 3 * @return the largest of the values */ public static long max(long a, final long b, final long c) { if (b > a) { a = b; } if (c > a) { a = c; } return a; } /** * Returns the maximum value in an array. * * @param array an array, must not be null or empty * @return the maximum value in the array * @throws NullPointerException if {@code array} is {@code null} * @throws IllegalArgumentException if {@code array} is empty * @since 3.4 Changed signature from max(short[]) to max(short...) */ public static short max(final short... array) { // Validates input validateArray(array); // Finds and returns max short max = array[0]; for (int i = 1; i < array.length; i++) { if (array[i] > max) { max = array[i]; } } return max; } /** * Gets the maximum of three {@code short} values. * * @param a value 1 * @param b value 2 * @param c value 3 * @return the largest of the values */ public static short max(short a, final short b, final short c) { if (b > a) { a = b; } if (c > a) { a = c; } return a; } /** * Returns the minimum value in an array. * * @param array an array, must not be null or empty * @return the minimum value in the array * @throws NullPointerException if {@code array} is {@code null} * @throws IllegalArgumentException if {@code array} is empty * @since 3.4 Changed signature from min(byte[]) to min(byte...) */ public static byte min(final byte... array) { // Validates input validateArray(array); // Finds and returns min byte min = array[0]; for (int i = 1; i < array.length; i++) { if (array[i] < min) { min = array[i]; } } return min; } /** * Gets the minimum of three {@code byte} values. * * @param a value 1 * @param b value 2 * @param c value 3 * @return the smallest of the values */ public static byte min(byte a, final byte b, final byte c) { if (b < a) { a = b; } if (c < a) { a = c; } return a; } /** * Returns the minimum value in an array. * * @param array an array, must not be null or empty * @return the minimum value in the array * @throws NullPointerException if {@code array} is {@code null} * @throws IllegalArgumentException if {@code array} is empty * @see IEEE754rUtils#min(double[]) IEEE754rUtils for a version of this method that handles NaN differently * @since 3.4 Changed signature from min(double[]) to min(double...) */ public static double min(final double... array) { // Validates input validateArray(array); // Finds and returns min double min = array[0]; for (int i = 1; i < array.length; i++) { if (Double.isNaN(array[i])) { return Double.NaN; } if (array[i] < min) { min = array[i]; } } return min; } /** * Gets the minimum of three {@code double} values. * *

If any value is {@code NaN}, {@code NaN} is * returned. Infinity is handled.

* * @param a value 1 * @param b value 2 * @param c value 3 * @return the smallest of the values * @see IEEE754rUtils#min(double, double, double) for a version of this method that handles NaN differently */ public static double min(final double a, final double b, final double c) { return Math.min(Math.min(a, b), c); } /** * Returns the minimum value in an array. * * @param array an array, must not be null or empty * @return the minimum value in the array * @throws NullPointerException if {@code array} is {@code null} * @throws IllegalArgumentException if {@code array} is empty * @see IEEE754rUtils#min(float[]) IEEE754rUtils for a version of this method that handles NaN differently * @since 3.4 Changed signature from min(float[]) to min(float...) */ public static float min(final float... array) { // Validates input validateArray(array); // Finds and returns min float min = array[0]; for (int i = 1; i < array.length; i++) { if (Float.isNaN(array[i])) { return Float.NaN; } if (array[i] < min) { min = array[i]; } } return min; } /** * Gets the minimum of three {@code float} values. * *

If any value is {@code NaN}, {@code NaN} is * returned. Infinity is handled.

* * @param a value 1 * @param b value 2 * @param c value 3 * @return the smallest of the values * @see IEEE754rUtils#min(float, float, float) for a version of this method that handles NaN differently */ public static float min(final float a, final float b, final float c) { return Math.min(Math.min(a, b), c); } /** * Returns the minimum value in an array. * * @param array an array, must not be null or empty * @return the minimum value in the array * @throws NullPointerException if {@code array} is {@code null} * @throws IllegalArgumentException if {@code array} is empty * @since 3.4 Changed signature from min(int[]) to min(int...) */ public static int min(final int... array) { // Validates input validateArray(array); // Finds and returns min int min = array[0]; for (int j = 1; j < array.length; j++) { if (array[j] < min) { min = array[j]; } } return min; } /** * Gets the minimum of three {@code int} values. * * @param a value 1 * @param b value 2 * @param c value 3 * @return the smallest of the values */ public static int min(int a, final int b, final int c) { if (b < a) { a = b; } if (c < a) { a = c; } return a; } /** * Returns the minimum value in an array. * * @param array an array, must not be null or empty * @return the minimum value in the array * @throws NullPointerException if {@code array} is {@code null} * @throws IllegalArgumentException if {@code array} is empty * @since 3.4 Changed signature from min(long[]) to min(long...) */ public static long min(final long... array) { // Validates input validateArray(array); // Finds and returns min long min = array[0]; for (int i = 1; i < array.length; i++) { if (array[i] < min) { min = array[i]; } } return min; } // 3 param min /** * Gets the minimum of three {@code long} values. * * @param a value 1 * @param b value 2 * @param c value 3 * @return the smallest of the values */ public static long min(long a, final long b, final long c) { if (b < a) { a = b; } if (c < a) { a = c; } return a; } /** * Returns the minimum value in an array. * * @param array an array, must not be null or empty * @return the minimum value in the array * @throws NullPointerException if {@code array} is {@code null} * @throws IllegalArgumentException if {@code array} is empty * @since 3.4 Changed signature from min(short[]) to min(short...) */ public static short min(final short... array) { // Validates input validateArray(array); // Finds and returns min short min = array[0]; for (int i = 1; i < array.length; i++) { if (array[i] < min) { min = array[i]; } } return min; } /** * Gets the minimum of three {@code short} values. * * @param a value 1 * @param b value 2 * @param c value 3 * @return the smallest of the values */ public static short min(short a, final short b, final short c) { if (b < a) { a = b; } if (c < a) { a = c; } return a; } /** * Convert a {@link String} to a {@code byte}, returning * {@code zero} if the conversion fails. * *

If the string is {@code null}, {@code zero} is returned.

* *
     *   NumberUtils.toByte(null) = 0
     *   NumberUtils.toByte("")   = 0
     *   NumberUtils.toByte("1")  = 1
     * 
* * @param str the string to convert, may be null * @return the byte represented by the string, or {@code zero} if * conversion fails * @since 2.5 */ public static byte toByte(final String str) { return toByte(str, (byte) 0); } /** * Convert a {@link String} to a {@code byte}, returning a * default value if the conversion fails. * *

If the string is {@code null}, the default value is returned.

* *
     *   NumberUtils.toByte(null, 1) = 1
     *   NumberUtils.toByte("", 1)   = 1
     *   NumberUtils.toByte("1", 0)  = 1
     * 
* * @param str the string to convert, may be null * @param defaultValue the default value * @return the byte represented by the string, or the default if conversion fails * @since 2.5 */ public static byte toByte(final String str, final byte defaultValue) { if (str == null) { return defaultValue; } try { return Byte.parseByte(str); } catch (final NumberFormatException nfe) { return defaultValue; } } /** * Convert a {@link BigDecimal} to a {@code double}. * *

If the {@link BigDecimal} {@code value} is * {@code null}, then the specified default value is returned.

* *
     *   NumberUtils.toDouble(null)                     = 0.0d
     *   NumberUtils.toDouble(BigDecimal.valueOf(8.5d)) = 8.5d
     * 
* * @param value the {@link BigDecimal} to convert, may be {@code null}. * @return the double represented by the {@link BigDecimal} or * {@code 0.0d} if the {@link BigDecimal} is {@code null}. * @since 3.8 */ public static double toDouble(final BigDecimal value) { return toDouble(value, 0.0d); } /** * Convert a {@link BigDecimal} to a {@code double}. * *

If the {@link BigDecimal} {@code value} is * {@code null}, then the specified default value is returned.

* *
     *   NumberUtils.toDouble(null, 1.1d)                     = 1.1d
     *   NumberUtils.toDouble(BigDecimal.valueOf(8.5d), 1.1d) = 8.5d
     * 
* * @param value the {@link BigDecimal} to convert, may be {@code null}. * @param defaultValue the default value * @return the double represented by the {@link BigDecimal} or the * defaultValue if the {@link BigDecimal} is {@code null}. * @since 3.8 */ public static double toDouble(final BigDecimal value, final double defaultValue) { return value == null ? defaultValue : value.doubleValue(); } /** * Convert a {@link String} to a {@code double}, returning * {@code 0.0d} if the conversion fails. * *

If the string {@code str} is {@code null}, * {@code 0.0d} is returned.

* *
     *   NumberUtils.toDouble(null)   = 0.0d
     *   NumberUtils.toDouble("")     = 0.0d
     *   NumberUtils.toDouble("1.5")  = 1.5d
     * 
* * @param str the string to convert, may be {@code null} * @return the double represented by the string, or {@code 0.0d} * if conversion fails * @since 2.1 */ public static double toDouble(final String str) { return toDouble(str, 0.0d); } /** * Convert a {@link String} to a {@code double}, returning a * default value if the conversion fails. * *

If the string {@code str} is {@code null}, the default * value is returned.

* *
     *   NumberUtils.toDouble(null, 1.1d)   = 1.1d
     *   NumberUtils.toDouble("", 1.1d)     = 1.1d
     *   NumberUtils.toDouble("1.5", 0.0d)  = 1.5d
     * 
* * @param str the string to convert, may be {@code null} * @param defaultValue the default value * @return the double represented by the string, or defaultValue * if conversion fails * @since 2.1 */ public static double toDouble(final String str, final double defaultValue) { if (str == null) { return defaultValue; } try { return Double.parseDouble(str); } catch (final NumberFormatException nfe) { return defaultValue; } } /** * Convert a {@link String} to a {@code float}, returning * {@code 0.0f} if the conversion fails. * *

If the string {@code str} is {@code null}, * {@code 0.0f} is returned.

* *
     *   NumberUtils.toFloat(null)   = 0.0f
     *   NumberUtils.toFloat("")     = 0.0f
     *   NumberUtils.toFloat("1.5")  = 1.5f
     * 
* * @param str the string to convert, may be {@code null} * @return the float represented by the string, or {@code 0.0f} * if conversion fails * @since 2.1 */ public static float toFloat(final String str) { return toFloat(str, 0.0f); } /** * Convert a {@link String} to a {@code float}, returning a * default value if the conversion fails. * *

If the string {@code str} is {@code null}, the default * value is returned.

* *
     *   NumberUtils.toFloat(null, 1.1f)   = 1.0f
     *   NumberUtils.toFloat("", 1.1f)     = 1.1f
     *   NumberUtils.toFloat("1.5", 0.0f)  = 1.5f
     * 
* * @param str the string to convert, may be {@code null} * @param defaultValue the default value * @return the float represented by the string, or defaultValue * if conversion fails * @since 2.1 */ public static float toFloat(final String str, final float defaultValue) { if (str == null) { return defaultValue; } try { return Float.parseFloat(str); } catch (final NumberFormatException nfe) { return defaultValue; } } /** * Convert a {@link String} to an {@code int}, returning * {@code zero} if the conversion fails. * *

If the string is {@code null}, {@code zero} is returned.

* *
     *   NumberUtils.toInt(null) = 0
     *   NumberUtils.toInt("")   = 0
     *   NumberUtils.toInt("1")  = 1
     * 
* * @param str the string to convert, may be null * @return the int represented by the string, or {@code zero} if * conversion fails * @since 2.1 */ public static int toInt(final String str) { return toInt(str, 0); } /** * Convert a {@link String} to an {@code int}, returning a * default value if the conversion fails. * *

If the string is {@code null}, the default value is returned.

* *
     *   NumberUtils.toInt(null, 1) = 1
     *   NumberUtils.toInt("", 1)   = 1
     *   NumberUtils.toInt("1", 0)  = 1
     * 
* * @param str the string to convert, may be null * @param defaultValue the default value * @return the int represented by the string, or the default if conversion fails * @since 2.1 */ public static int toInt(final String str, final int defaultValue) { if (str == null) { return defaultValue; } try { return Integer.parseInt(str); } catch (final NumberFormatException nfe) { return defaultValue; } } /** * Convert a {@link String} to a {@code long}, returning * {@code zero} if the conversion fails. * *

If the string is {@code null}, {@code zero} is returned.

* *
     *   NumberUtils.toLong(null) = 0L
     *   NumberUtils.toLong("")   = 0L
     *   NumberUtils.toLong("1")  = 1L
     * 
* * @param str the string to convert, may be null * @return the long represented by the string, or {@code 0} if * conversion fails * @since 2.1 */ public static long toLong(final String str) { return toLong(str, 0L); } /** * Convert a {@link String} to a {@code long}, returning a * default value if the conversion fails. * *

If the string is {@code null}, the default value is returned.

* *
     *   NumberUtils.toLong(null, 1L) = 1L
     *   NumberUtils.toLong("", 1L)   = 1L
     *   NumberUtils.toLong("1", 0L)  = 1L
     * 
* * @param str the string to convert, may be null * @param defaultValue the default value * @return the long represented by the string, or the default if conversion fails * @since 2.1 */ public static long toLong(final String str, final long defaultValue) { if (str == null) { return defaultValue; } try { return Long.parseLong(str); } catch (final NumberFormatException nfe) { return defaultValue; } } /** * Convert a {@link BigDecimal} to a {@link BigDecimal} with a scale of * two that has been rounded using {@code RoundingMode.HALF_EVEN}. If the supplied * {@code value} is null, then {@code BigDecimal.ZERO} is returned. * *

Note, the scale of a {@link BigDecimal} is the number of digits to the right of the * decimal point.

* * @param value the {@link BigDecimal} to convert, may be null. * @return the scaled, with appropriate rounding, {@link BigDecimal}. * @since 3.8 */ public static BigDecimal toScaledBigDecimal(final BigDecimal value) { return toScaledBigDecimal(value, INTEGER_TWO, RoundingMode.HALF_EVEN); } /** * Convert a {@link BigDecimal} to a {@link BigDecimal} whose scale is the * specified value with a {@link RoundingMode} applied. If the input {@code value} * is {@code null}, we simply return {@code BigDecimal.ZERO}. * * @param value the {@link BigDecimal} to convert, may be null. * @param scale the number of digits to the right of the decimal point. * @param roundingMode a rounding behavior for numerical operations capable of * discarding precision. * @return the scaled, with appropriate rounding, {@link BigDecimal}. * @since 3.8 */ public static BigDecimal toScaledBigDecimal(final BigDecimal value, final int scale, final RoundingMode roundingMode) { if (value == null) { return BigDecimal.ZERO; } return value.setScale( scale, roundingMode == null ? RoundingMode.HALF_EVEN : roundingMode ); } /** * Convert a {@link Double} to a {@link BigDecimal} with a scale of * two that has been rounded using {@code RoundingMode.HALF_EVEN}. If the supplied * {@code value} is null, then {@code BigDecimal.ZERO} is returned. * *

Note, the scale of a {@link BigDecimal} is the number of digits to the right of the * decimal point.

* * @param value the {@link Double} to convert, may be null. * @return the scaled, with appropriate rounding, {@link BigDecimal}. * @since 3.8 */ public static BigDecimal toScaledBigDecimal(final Double value) { return toScaledBigDecimal(value, INTEGER_TWO, RoundingMode.HALF_EVEN); } /** * Convert a {@link Double} to a {@link BigDecimal} whose scale is the * specified value with a {@link RoundingMode} applied. If the input {@code value} * is {@code null}, we simply return {@code BigDecimal.ZERO}. * * @param value the {@link Double} to convert, may be null. * @param scale the number of digits to the right of the decimal point. * @param roundingMode a rounding behavior for numerical operations capable of * discarding precision. * @return the scaled, with appropriate rounding, {@link BigDecimal}. * @since 3.8 */ public static BigDecimal toScaledBigDecimal(final Double value, final int scale, final RoundingMode roundingMode) { if (value == null) { return BigDecimal.ZERO; } return toScaledBigDecimal( BigDecimal.valueOf(value), scale, roundingMode ); } /** * Convert a {@link Float} to a {@link BigDecimal} with a scale of * two that has been rounded using {@code RoundingMode.HALF_EVEN}. If the supplied * {@code value} is null, then {@code BigDecimal.ZERO} is returned. * *

Note, the scale of a {@link BigDecimal} is the number of digits to the right of the * decimal point.

* * @param value the {@link Float} to convert, may be null. * @return the scaled, with appropriate rounding, {@link BigDecimal}. * @since 3.8 */ public static BigDecimal toScaledBigDecimal(final Float value) { return toScaledBigDecimal(value, INTEGER_TWO, RoundingMode.HALF_EVEN); } /** * Convert a {@link Float} to a {@link BigDecimal} whose scale is the * specified value with a {@link RoundingMode} applied. If the input {@code value} * is {@code null}, we simply return {@code BigDecimal.ZERO}. * * @param value the {@link Float} to convert, may be null. * @param scale the number of digits to the right of the decimal point. * @param roundingMode a rounding behavior for numerical operations capable of * discarding precision. * @return the scaled, with appropriate rounding, {@link BigDecimal}. * @since 3.8 */ public static BigDecimal toScaledBigDecimal(final Float value, final int scale, final RoundingMode roundingMode) { if (value == null) { return BigDecimal.ZERO; } return toScaledBigDecimal( BigDecimal.valueOf(value), scale, roundingMode ); } /** * Convert a {@link String} to a {@link BigDecimal} with a scale of * two that has been rounded using {@code RoundingMode.HALF_EVEN}. If the supplied * {@code value} is null, then {@code BigDecimal.ZERO} is returned. * *

Note, the scale of a {@link BigDecimal} is the number of digits to the right of the * decimal point.

* * @param value the {@link String} to convert, may be null. * @return the scaled, with appropriate rounding, {@link BigDecimal}. * @since 3.8 */ public static BigDecimal toScaledBigDecimal(final String value) { return toScaledBigDecimal(value, INTEGER_TWO, RoundingMode.HALF_EVEN); } /** * Convert a {@link String} to a {@link BigDecimal} whose scale is the * specified value with a {@link RoundingMode} applied. If the input {@code value} * is {@code null}, we simply return {@code BigDecimal.ZERO}. * * @param value the {@link String} to convert, may be null. * @param scale the number of digits to the right of the decimal point. * @param roundingMode a rounding behavior for numerical operations capable of * discarding precision. * @return the scaled, with appropriate rounding, {@link BigDecimal}. * @since 3.8 */ public static BigDecimal toScaledBigDecimal(final String value, final int scale, final RoundingMode roundingMode) { if (value == null) { return BigDecimal.ZERO; } return toScaledBigDecimal( createBigDecimal(value), scale, roundingMode ); } /** * Convert a {@link String} to a {@code short}, returning * {@code zero} if the conversion fails. * *

If the string is {@code null}, {@code zero} is returned.

* *
     *   NumberUtils.toShort(null) = 0
     *   NumberUtils.toShort("")   = 0
     *   NumberUtils.toShort("1")  = 1
     * 
* * @param str the string to convert, may be null * @return the short represented by the string, or {@code zero} if * conversion fails * @since 2.5 */ public static short toShort(final String str) { return toShort(str, (short) 0); } /** * Convert a {@link String} to an {@code short}, returning a * default value if the conversion fails. * *

If the string is {@code null}, the default value is returned.

* *
     *   NumberUtils.toShort(null, 1) = 1
     *   NumberUtils.toShort("", 1)   = 1
     *   NumberUtils.toShort("1", 0)  = 1
     * 
* * @param str the string to convert, may be null * @param defaultValue the default value * @return the short represented by the string, or the default if conversion fails * @since 2.5 */ public static short toShort(final String str, final short defaultValue) { if (str == null) { return defaultValue; } try { return Short.parseShort(str); } catch (final NumberFormatException nfe) { return defaultValue; } } /** * Checks if the specified array is neither null nor empty. * * @param array the array to check * @throws IllegalArgumentException if {@code array} is empty * @throws NullPointerException if {@code array} is {@code null} */ private static void validateArray(final Object array) { Objects.requireNonNull(array, "array"); Validate.isTrue(Array.getLength(array) != 0, "Array cannot be empty."); } private static boolean withDecimalsParsing(final String str, final int beginIdx) { int decimalPoints = 0; for (int i = beginIdx; i < str.length(); i++) { final boolean isDecimalPoint = str.charAt(i) == '.'; if (isDecimalPoint) { decimalPoints++; } if (decimalPoints > 1) { return false; } if (!isDecimalPoint && !Character.isDigit(str.charAt(i))) { return false; } } return true; } /** * {@link NumberUtils} instances should NOT be constructed in standard programming. * Instead, the class should be used as {@code NumberUtils.toInt("6");}. * *

This constructor is public to permit tools that require a JavaBean instance * to operate.

*/ public NumberUtils() { } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy