All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.lang3.math.NumberUtils Maven / Gradle / Ivy

Go to download

Apache Commons Lang, a package of Java utility classes for the classes that are in java.lang's hierarchy, or are considered to be so standard as to justify existence in java.lang.

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.lang3.math;

import java.lang.reflect.Array;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.RoundingMode;
import java.util.Objects;

import org.apache.commons.lang3.StringUtils;
import org.apache.commons.lang3.Validate;

/**
 * Provides extra functionality for Java Number classes.
 *
 * @since 2.0
 */
public class NumberUtils {

    /** Reusable Long constant for zero. */
    public static final Long LONG_ZERO = Long.valueOf(0L);
    /** Reusable Long constant for one. */
    public static final Long LONG_ONE = Long.valueOf(1L);
    /** Reusable Long constant for minus one. */
    public static final Long LONG_MINUS_ONE = Long.valueOf(-1L);
    /** Reusable Integer constant for zero. */
    public static final Integer INTEGER_ZERO = Integer.valueOf(0);
    /** Reusable Integer constant for one. */
    public static final Integer INTEGER_ONE = Integer.valueOf(1);
    /** Reusable Integer constant for two */
    public static final Integer INTEGER_TWO = Integer.valueOf(2);
    /** Reusable Integer constant for minus one. */
    public static final Integer INTEGER_MINUS_ONE = Integer.valueOf(-1);
    /** Reusable Short constant for zero. */
    public static final Short SHORT_ZERO = Short.valueOf((short) 0);
    /** Reusable Short constant for one. */
    public static final Short SHORT_ONE = Short.valueOf((short) 1);
    /** Reusable Short constant for minus one. */
    public static final Short SHORT_MINUS_ONE = Short.valueOf((short) -1);
    /** Reusable Byte constant for zero. */
    public static final Byte BYTE_ZERO = Byte.valueOf((byte) 0);
    /** Reusable Byte constant for one. */
    public static final Byte BYTE_ONE = Byte.valueOf((byte) 1);
    /** Reusable Byte constant for minus one. */
    public static final Byte BYTE_MINUS_ONE = Byte.valueOf((byte) -1);
    /** Reusable Double constant for zero. */
    public static final Double DOUBLE_ZERO = Double.valueOf(0.0d);
    /** Reusable Double constant for one. */
    public static final Double DOUBLE_ONE = Double.valueOf(1.0d);
    /** Reusable Double constant for minus one. */
    public static final Double DOUBLE_MINUS_ONE = Double.valueOf(-1.0d);
    /** Reusable Float constant for zero. */
    public static final Float FLOAT_ZERO = Float.valueOf(0.0f);
    /** Reusable Float constant for one. */
    public static final Float FLOAT_ONE = Float.valueOf(1.0f);
    /** Reusable Float constant for minus one. */
    public static final Float FLOAT_MINUS_ONE = Float.valueOf(-1.0f);

    /**
     * {@link Integer#MAX_VALUE} as a {@link Long}.
     *
     * @since 3.12.0
     */
    public static final Long LONG_INT_MAX_VALUE = Long.valueOf(Integer.MAX_VALUE);

    /**
     * {@link Integer#MIN_VALUE} as a {@link Long}.
     *
     * @since 3.12.0
     */
    public static final Long LONG_INT_MIN_VALUE = Long.valueOf(Integer.MIN_VALUE);

    /**
     * Compares two {@code byte} values numerically. This is the same functionality as provided in Java 7.
     *
     * @param x the first {@code byte} to compare
     * @param y the second {@code byte} to compare
     * @return the value {@code 0} if {@code x == y};
     *         a value less than {@code 0} if {@code x < y}; and
     *         a value greater than {@code 0} if {@code x > y}
     * @since 3.4
     */
    public static int compare(final byte x, final byte y) {
        return x - y;
    }

    /**
     * Compares two {@code int} values numerically. This is the same functionality as provided in Java 7.
     *
     * @param x the first {@code int} to compare
     * @param y the second {@code int} to compare
     * @return the value {@code 0} if {@code x == y};
     *         a value less than {@code 0} if {@code x < y}; and
     *         a value greater than {@code 0} if {@code x > y}
     * @since 3.4
     */
    public static int compare(final int x, final int y) {
        if (x == y) {
            return 0;
        }
        return x < y ? -1 : 1;
    }

    /**
     * Compares to {@code long} values numerically. This is the same functionality as provided in Java 7.
     *
     * @param x the first {@code long} to compare
     * @param y the second {@code long} to compare
     * @return the value {@code 0} if {@code x == y};
     *         a value less than {@code 0} if {@code x < y}; and
     *         a value greater than {@code 0} if {@code x > y}
     * @since 3.4
     */
    public static int compare(final long x, final long y) {
        if (x == y) {
            return 0;
        }
        return x < y ? -1 : 1;
    }

    /**
     * Compares to {@code short} values numerically. This is the same functionality as provided in Java 7.
     *
     * @param x the first {@code short} to compare
     * @param y the second {@code short} to compare
     * @return the value {@code 0} if {@code x == y};
     *         a value less than {@code 0} if {@code x < y}; and
     *         a value greater than {@code 0} if {@code x > y}
     * @since 3.4
     */
    public static int compare(final short x, final short y) {
        if (x == y) {
            return 0;
        }
        return x < y ? -1 : 1;
    }

    /**
     * Creates a {@link BigDecimal} from a {@link String}.
     *
     * 

Returns {@code null} if the string is {@code null}.

* * @param str a {@link String} to convert, may be null * @return converted {@link BigDecimal} (or null if the input is null) * @throws NumberFormatException if the value cannot be converted */ public static BigDecimal createBigDecimal(final String str) { if (str == null) { return null; } // handle JDK1.3.1 bug where "" throws IndexOutOfBoundsException if (StringUtils.isBlank(str)) { throw new NumberFormatException("A blank string is not a valid number"); } return new BigDecimal(str); } /** * Creates a {@link BigInteger} from a {@link String}. * * Handles hexadecimal (0x or #) and octal (0) notations. * *

Returns {@code null} if the string is {@code null}.

* * @param str a {@link String} to convert, may be null * @return converted {@link BigInteger} (or null if the input is null) * @throws NumberFormatException if the value cannot be converted * @since 3.2 */ public static BigInteger createBigInteger(final String str) { if (str == null) { return null; } if (str.isEmpty()) { throw new NumberFormatException("An empty string is not a valid number"); } int pos = 0; // offset within string int radix = 10; boolean negate = false; // need to negate later? final char char0 = str.charAt(0); if (char0 == '-') { negate = true; pos = 1; } else if (char0 == '+') { pos = 1; } if (str.startsWith("0x", pos) || str.startsWith("0X", pos)) { // hex radix = 16; pos += 2; } else if (str.startsWith("#", pos)) { // alternative hex (allowed by Long/Integer) radix = 16; pos++; } else if (str.startsWith("0", pos) && str.length() > pos + 1) { // octal; so long as there are additional digits radix = 8; pos++; } // default is to treat as decimal final BigInteger value = new BigInteger(str.substring(pos), radix); return negate ? value.negate() : value; } /** * Creates a {@link Double} from a {@link String}. * *

Returns {@code null} if the string is {@code null}.

* * @param str a {@link String} to convert, may be null * @return converted {@link Double} (or null if the input is null) * @throws NumberFormatException if the value cannot be converted */ public static Double createDouble(final String str) { if (str == null) { return null; } return Double.valueOf(str); } /** * Creates a {@link Float} from a {@link String}. * *

Returns {@code null} if the string is {@code null}.

* * @param str a {@link String} to convert, may be null * @return converted {@link Float} (or null if the input is null) * @throws NumberFormatException if the value cannot be converted */ public static Float createFloat(final String str) { if (str == null) { return null; } return Float.valueOf(str); } /** * Creates an {@link Integer} from a {@link String}. * * Handles hexadecimal (0xhhhh) and octal (0dddd) notations. * N.B. a leading zero means octal; spaces are not trimmed. * *

Returns {@code null} if the string is {@code null}.

* * @param str a {@link String} to convert, may be null * @return converted {@link Integer} (or null if the input is null) * @throws NumberFormatException if the value cannot be converted */ public static Integer createInteger(final String str) { if (str == null) { return null; } // decode() handles 0xAABD and 0777 (hex and octal) as well. return Integer.decode(str); } /** * Creates a {@link Long} from a {@link String}. * * Handles hexadecimal (0Xhhhh) and octal (0ddd) notations. * N.B. a leading zero means octal; spaces are not trimmed. * *

Returns {@code null} if the string is {@code null}.

* * @param str a {@link String} to convert, may be null * @return converted {@link Long} (or null if the input is null) * @throws NumberFormatException if the value cannot be converted * @since 3.1 */ public static Long createLong(final String str) { if (str == null) { return null; } return Long.decode(str); } /** * Creates a {@link Number} from a {@link String}. * *

If the string starts with {@code 0x} or {@code -0x} (lower or upper case) or {@code #} or {@code -#}, it * will be interpreted as a hexadecimal Integer - or Long, if the number of digits after the * prefix is more than 8 - or BigInteger if there are more than 16 digits. *

*

Then, the value is examined for a type qualifier on the end, i.e. one of * {@code 'f', 'F', 'd', 'D', 'l', 'L'}. If it is found, it starts * trying to create successively larger types from the type specified * until one is found that can represent the value.

* *

If a type specifier is not found, it will check for a decimal point * and then try successively larger types from {@link Integer} to * {@link BigInteger} and from {@link Float} to * {@link BigDecimal}.

* *

* Integral values with a leading {@code 0} will be interpreted as octal; the returned number will * be Integer, Long or BigDecimal as appropriate. *

* *

Returns {@code null} if the string is {@code null}.

* *

This method does not trim the input string, i.e., strings with leading * or trailing spaces will generate NumberFormatExceptions.

* * @param str String containing a number, may be null * @return Number created from the string (or null if the input is null) * @throws NumberFormatException if the value cannot be converted */ public static Number createNumber(final String str) { if (str == null) { return null; } if (StringUtils.isBlank(str)) { throw new NumberFormatException("A blank string is not a valid number"); } // Need to deal with all possible hex prefixes here final String[] hexPrefixes = {"0x", "0X", "#"}; final int length = str.length(); final int offset = str.charAt(0) == '+' || str.charAt(0) == '-' ? 1 : 0; int pfxLen = 0; for (final String pfx : hexPrefixes) { if (str.startsWith(pfx, offset)) { pfxLen += pfx.length() + offset; break; } } if (pfxLen > 0) { // we have a hex number char firstSigDigit = 0; // strip leading zeroes for (int i = pfxLen; i < length; i++) { firstSigDigit = str.charAt(i); if (firstSigDigit != '0') { break; } pfxLen++; } final int hexDigits = length - pfxLen; if (hexDigits > 16 || hexDigits == 16 && firstSigDigit > '7') { // too many for Long return createBigInteger(str); } if (hexDigits > 8 || hexDigits == 8 && firstSigDigit > '7') { // too many for an int return createLong(str); } return createInteger(str); } final char lastChar = str.charAt(length - 1); final String mant; final String dec; final String exp; final int decPos = str.indexOf('.'); final int expPos = str.indexOf('e') + str.indexOf('E') + 1; // assumes both not present // if both e and E are present, this is caught by the checks on expPos (which prevent IOOBE) // and the parsing which will detect if e or E appear in a number due to using the wrong offset // Detect if the return type has been requested final boolean requestType = !Character.isDigit(lastChar) && lastChar != '.'; if (decPos > -1) { // there is a decimal point if (expPos > -1) { // there is an exponent if (expPos <= decPos || expPos > length) { // prevents double exponent causing IOOBE throw new NumberFormatException(str + " is not a valid number."); } dec = str.substring(decPos + 1, expPos); } else { // No exponent, but there may be a type character to remove dec = str.substring(decPos + 1, requestType ? length - 1 : length); } mant = getMantissa(str, decPos); } else { if (expPos > -1) { if (expPos > length) { // prevents double exponent causing IOOBE throw new NumberFormatException(str + " is not a valid number."); } mant = getMantissa(str, expPos); } else { // No decimal, no exponent, but there may be a type character to remove mant = getMantissa(str, requestType ? length - 1 : length); } dec = null; } if (requestType) { if (expPos > -1 && expPos < length - 1) { exp = str.substring(expPos + 1, length - 1); } else { exp = null; } //Requesting a specific type. final String numeric = str.substring(0, length - 1); switch (lastChar) { case 'l' : case 'L' : if (dec == null && exp == null && (!numeric.isEmpty() && numeric.charAt(0) == '-' && isDigits(numeric.substring(1)) || isDigits(numeric))) { try { return createLong(numeric); } catch (final NumberFormatException ignored) { // Too big for a long } return createBigInteger(numeric); } throw new NumberFormatException(str + " is not a valid number."); case 'f' : case 'F' : try { final Float f = createFloat(str); if (!(f.isInfinite() || f.floatValue() == 0.0F && !isZero(mant, dec))) { //If it's too big for a float or the float value = 0 and the string //has non-zeros in it, then float does not have the precision we want return f; } } catch (final NumberFormatException ignored) { // ignore the bad number } //$FALL-THROUGH$ case 'd' : case 'D' : try { final Double d = createDouble(str); if (!(d.isInfinite() || d.doubleValue() == 0.0D && !isZero(mant, dec))) { return d; } } catch (final NumberFormatException ignored) { // ignore the bad number } try { return createBigDecimal(numeric); } catch (final NumberFormatException ignored) { // ignore the bad number } //$FALL-THROUGH$ default : throw new NumberFormatException(str + " is not a valid number."); } } //User doesn't have a preference on the return type, so let's start //small and go from there... if (expPos > -1 && expPos < length - 1) { exp = str.substring(expPos + 1); } else { exp = null; } if (dec == null && exp == null) { // no decimal point and no exponent //Must be an Integer, Long, Biginteger try { return createInteger(str); } catch (final NumberFormatException ignored) { // ignore the bad number } try { return createLong(str); } catch (final NumberFormatException ignored) { // ignore the bad number } return createBigInteger(str); } //Must be a Float, Double, BigDecimal try { final Float f = createFloat(str); final Double d = createDouble(str); if (!f.isInfinite() && !(f.floatValue() == 0.0F && !isZero(mant, dec)) && f.toString().equals(d.toString())) { return f; } if (!d.isInfinite() && !(d.doubleValue() == 0.0D && !isZero(mant, dec))) { final BigDecimal b = createBigDecimal(str); if (b.compareTo(BigDecimal.valueOf(d.doubleValue())) == 0) { return d; } return b; } } catch (final NumberFormatException ignored) { // ignore the bad number } return createBigDecimal(str); } /** * Utility method for {@link #createNumber(String)}. * *

Returns mantissa of the given number.

* * @param str the string representation of the number * @param stopPos the position of the exponent or decimal point * @return mantissa of the given number * @throws NumberFormatException if no mantissa can be retrieved */ private static String getMantissa(final String str, final int stopPos) { final char firstChar = str.charAt(0); final boolean hasSign = firstChar == '-' || firstChar == '+'; final int length = str.length(); if (length <= (hasSign ? 1 : 0) || length < stopPos) { throw new NumberFormatException(str + " is not a valid number."); } return hasSign ? str.substring(1, stopPos) : str.substring(0, stopPos); } /** * Utility method for {@link #createNumber(java.lang.String)}. * *

Returns {@code true} if s is {@code null} or empty.

* * @param str the String to check * @return if it is all zeros or {@code null} */ private static boolean isAllZeros(final String str) { if (str == null) { return true; } for (int i = str.length() - 1; i >= 0; i--) { if (str.charAt(i) != '0') { return false; } } return true; } /** * Checks whether the String is a valid Java number. * *

Valid numbers include hexadecimal marked with the {@code 0x} or * {@code 0X} qualifier, octal numbers, scientific notation and * numbers marked with a type qualifier (e.g. 123L).

* *

Non-hexadecimal strings beginning with a leading zero are * treated as octal values. Thus the string {@code 09} will return * {@code false}, since {@code 9} is not a valid octal value. * However, numbers beginning with {@code 0.} are treated as decimal.

* *

{@code null} and empty/blank {@link String} will return * {@code false}.

* *

Note, {@link #createNumber(String)} should return a number for every * input resulting in {@code true}.

* * @param str the {@link String} to check * @return {@code true} if the string is a correctly formatted number * @since 3.5 */ public static boolean isCreatable(final String str) { if (StringUtils.isEmpty(str)) { return false; } final char[] chars = str.toCharArray(); int sz = chars.length; boolean hasExp = false; boolean hasDecPoint = false; boolean allowSigns = false; boolean foundDigit = false; // deal with any possible sign up front final int start = chars[0] == '-' || chars[0] == '+' ? 1 : 0; if (sz > start + 1 && chars[start] == '0' && !StringUtils.contains(str, '.')) { // leading 0, skip if is a decimal number if (chars[start + 1] == 'x' || chars[start + 1] == 'X') { // leading 0x/0X int i = start + 2; if (i == sz) { return false; // str == "0x" } // checking hex (it can't be anything else) for (; i < chars.length; i++) { if ((chars[i] < '0' || chars[i] > '9') && (chars[i] < 'a' || chars[i] > 'f') && (chars[i] < 'A' || chars[i] > 'F')) { return false; } } return true; } if (Character.isDigit(chars[start + 1])) { // leading 0, but not hex, must be octal int i = start + 1; for (; i < chars.length; i++) { if (chars[i] < '0' || chars[i] > '7') { return false; } } return true; } } sz--; // don't want to loop to the last char, check it afterwards // for type qualifiers int i = start; // loop to the next to last char or to the last char if we need another digit to // make a valid number (e.g. chars[0..5] = "1234E") while (i < sz || i < sz + 1 && allowSigns && !foundDigit) { if (chars[i] >= '0' && chars[i] <= '9') { foundDigit = true; allowSigns = false; } else if (chars[i] == '.') { if (hasDecPoint || hasExp) { // two decimal points or dec in exponent return false; } hasDecPoint = true; } else if (chars[i] == 'e' || chars[i] == 'E') { // we've already taken care of hex. if (hasExp) { // two E's return false; } if (!foundDigit) { return false; } hasExp = true; allowSigns = true; } else if (chars[i] == '+' || chars[i] == '-') { if (!allowSigns) { return false; } allowSigns = false; foundDigit = false; // we need a digit after the E } else { return false; } i++; } if (i < chars.length) { if (chars[i] >= '0' && chars[i] <= '9') { // no type qualifier, OK return true; } if (chars[i] == 'e' || chars[i] == 'E') { // can't have an E at the last byte return false; } if (chars[i] == '.') { if (hasDecPoint || hasExp) { // two decimal points or dec in exponent return false; } // single trailing decimal point after non-exponent is ok return foundDigit; } if (!allowSigns && (chars[i] == 'd' || chars[i] == 'D' || chars[i] == 'f' || chars[i] == 'F')) { return foundDigit; } if (chars[i] == 'l' || chars[i] == 'L') { // not allowing L with an exponent or decimal point return foundDigit && !hasExp && !hasDecPoint; } // last character is illegal return false; } // allowSigns is true iff the val ends in 'E' // found digit it to make sure weird stuff like '.' and '1E-' doesn't pass return !allowSigns && foundDigit; } /** * Checks whether the {@link String} contains only * digit characters. * *

{@code null} and empty String will return * {@code false}.

* * @param str the {@link String} to check * @return {@code true} if str contains only Unicode numeric */ public static boolean isDigits(final String str) { return StringUtils.isNumeric(str); } /** * Checks whether the String is a valid Java number. * *

Valid numbers include hexadecimal marked with the {@code 0x} or * {@code 0X} qualifier, octal numbers, scientific notation and * numbers marked with a type qualifier (e.g. 123L).

* *

Non-hexadecimal strings beginning with a leading zero are * treated as octal values. Thus the string {@code 09} will return * {@code false}, since {@code 9} is not a valid octal value. * However, numbers beginning with {@code 0.} are treated as decimal.

* *

{@code null} and empty/blank {@link String} will return * {@code false}.

* *

Note, {@link #createNumber(String)} should return a number for every * input resulting in {@code true}.

* * @param str the {@link String} to check * @return {@code true} if the string is a correctly formatted number * @since 3.3 the code supports hexadecimal {@code 0Xhhh} an * octal {@code 0ddd} validation * @deprecated This feature will be removed in Lang 4, * use {@link NumberUtils#isCreatable(String)} instead */ @Deprecated public static boolean isNumber(final String str) { return isCreatable(str); } /** * Checks whether the given String is a parsable number. * *

Parsable numbers include those Strings understood by {@link Integer#parseInt(String)}, * {@link Long#parseLong(String)}, {@link Float#parseFloat(String)} or * {@link Double#parseDouble(String)}. This method can be used instead of catching {@link java.text.ParseException} * when calling one of those methods.

* *

Hexadecimal and scientific notations are not considered parsable. * See {@link #isCreatable(String)} on those cases.

* *

{@code null} and empty String will return {@code false}.

* * @param str the String to check. * @return {@code true} if the string is a parsable number. * @since 3.4 */ public static boolean isParsable(final String str) { if (StringUtils.isEmpty(str)) { return false; } if (str.charAt(str.length() - 1) == '.') { return false; } if (str.charAt(0) == '-') { if (str.length() == 1) { return false; } return withDecimalsParsing(str, 1); } return withDecimalsParsing(str, 0); } /** * Utility method for {@link #createNumber(java.lang.String)}. * *

This will check if the magnitude of the number is zero by checking if there * are only zeros before and after the decimal place.

* *

Note: It is assumed that the input string has been converted * to either a Float or Double with a value of zero when this method is called. * This eliminates invalid input for example {@code ".", ".D", ".e0"}.

* *

Thus the method only requires checking if both arguments are null, empty or * contain only zeros.

* *

Given {@code s = mant + "." + dec}:

*
    *
  • {@code true} if s is {@code "0.0"} *
  • {@code true} if s is {@code "0."} *
  • {@code true} if s is {@code ".0"} *
  • {@code false} otherwise (this assumes {@code "."} is not possible) *
* * @param mant the mantissa decimal digits before the decimal point (sign must be removed; never null) * @param dec the decimal digits after the decimal point (exponent and type specifier removed; * can be null) * @return true if the magnitude is zero */ private static boolean isZero(final String mant, final String dec) { return isAllZeros(mant) && isAllZeros(dec); } /** * Returns the maximum value in an array. * * @param array an array, must not be null or empty * @return the maximum value in the array * @throws NullPointerException if {@code array} is {@code null} * @throws IllegalArgumentException if {@code array} is empty * @since 3.4 Changed signature from max(byte[]) to max(byte...) */ public static byte max(final byte... array) { // Validates input validateArray(array); // Finds and returns max byte max = array[0]; for (int i = 1; i < array.length; i++) { if (array[i] > max) { max = array[i]; } } return max; } /** * Gets the maximum of three {@code byte} values. * * @param a value 1 * @param b value 2 * @param c value 3 * @return the largest of the values */ public static byte max(byte a, final byte b, final byte c) { if (b > a) { a = b; } if (c > a) { a = c; } return a; } /** * Returns the maximum value in an array. * * @param array an array, must not be null or empty * @return the maximum value in the array * @throws NullPointerException if {@code array} is {@code null} * @throws IllegalArgumentException if {@code array} is empty * @see IEEE754rUtils#max(double[]) IEEE754rUtils for a version of this method that handles NaN differently * @since 3.4 Changed signature from max(double[]) to max(double...) */ public static double max(final double... array) { // Validates input validateArray(array); // Finds and returns max double max = array[0]; for (int j = 1; j < array.length; j++) { if (Double.isNaN(array[j])) { return Double.NaN; } if (array[j] > max) { max = array[j]; } } return max; } /** * Gets the maximum of three {@code double} values. * *

If any value is {@code NaN}, {@code NaN} is * returned. Infinity is handled.

* * @param a value 1 * @param b value 2 * @param c value 3 * @return the largest of the values * @see IEEE754rUtils#max(double, double, double) for a version of this method that handles NaN differently */ public static double max(final double a, final double b, final double c) { return Math.max(Math.max(a, b), c); } /** * Returns the maximum value in an array. * * @param array an array, must not be null or empty * @return the maximum value in the array * @throws NullPointerException if {@code array} is {@code null} * @throws IllegalArgumentException if {@code array} is empty * @see IEEE754rUtils#max(float[]) IEEE754rUtils for a version of this method that handles NaN differently * @since 3.4 Changed signature from max(float[]) to max(float...) */ public static float max(final float... array) { // Validates input validateArray(array); // Finds and returns max float max = array[0]; for (int j = 1; j < array.length; j++) { if (Float.isNaN(array[j])) { return Float.NaN; } if (array[j] > max) { max = array[j]; } } return max; } // must handle Long, Float, Integer, Float, Short, // BigDecimal, BigInteger and Byte // useful methods: // Byte.decode(String) // Byte.valueOf(String, int radix) // Byte.valueOf(String) // Double.valueOf(String) // Float.valueOf(String) // Float.valueOf(String) // Integer.valueOf(String, int radix) // Integer.valueOf(String) // Integer.decode(String) // Integer.getInteger(String) // Integer.getInteger(String, int val) // Integer.getInteger(String, Integer val) // Integer.valueOf(String) // Double.valueOf(String) // new Byte(String) // Long.valueOf(String) // Long.getLong(String) // Long.getLong(String, int) // Long.getLong(String, Integer) // Long.valueOf(String, int) // Long.valueOf(String) // Short.valueOf(String) // Short.decode(String) // Short.valueOf(String, int) // Short.valueOf(String) // new BigDecimal(String) // new BigInteger(String) // new BigInteger(String, int radix) // Possible inputs: // 45 45.5 45E7 4.5E7 Hex Oct Binary xxxF xxxD xxxf xxxd // plus minus everything. Prolly more. A lot are not separable. /** * Gets the maximum of three {@code float} values. * *

If any value is {@code NaN}, {@code NaN} is * returned. Infinity is handled.

* * @param a value 1 * @param b value 2 * @param c value 3 * @return the largest of the values * @see IEEE754rUtils#max(float, float, float) for a version of this method that handles NaN differently */ public static float max(final float a, final float b, final float c) { return Math.max(Math.max(a, b), c); } /** * Returns the maximum value in an array. * * @param array an array, must not be null or empty * @return the maximum value in the array * @throws NullPointerException if {@code array} is {@code null} * @throws IllegalArgumentException if {@code array} is empty * @since 3.4 Changed signature from max(int[]) to max(int...) */ public static int max(final int... array) { // Validates input validateArray(array); // Finds and returns max int max = array[0]; for (int j = 1; j < array.length; j++) { if (array[j] > max) { max = array[j]; } } return max; } /** * Gets the maximum of three {@code int} values. * * @param a value 1 * @param b value 2 * @param c value 3 * @return the largest of the values */ public static int max(int a, final int b, final int c) { if (b > a) { a = b; } if (c > a) { a = c; } return a; } /** * Returns the maximum value in an array. * * @param array an array, must not be null or empty * @return the maximum value in the array * @throws NullPointerException if {@code array} is {@code null} * @throws IllegalArgumentException if {@code array} is empty * @since 3.4 Changed signature from max(long[]) to max(long...) */ public static long max(final long... array) { // Validates input validateArray(array); // Finds and returns max long max = array[0]; for (int j = 1; j < array.length; j++) { if (array[j] > max) { max = array[j]; } } return max; } // 3 param max /** * Gets the maximum of three {@code long} values. * * @param a value 1 * @param b value 2 * @param c value 3 * @return the largest of the values */ public static long max(long a, final long b, final long c) { if (b > a) { a = b; } if (c > a) { a = c; } return a; } /** * Returns the maximum value in an array. * * @param array an array, must not be null or empty * @return the maximum value in the array * @throws NullPointerException if {@code array} is {@code null} * @throws IllegalArgumentException if {@code array} is empty * @since 3.4 Changed signature from max(short[]) to max(short...) */ public static short max(final short... array) { // Validates input validateArray(array); // Finds and returns max short max = array[0]; for (int i = 1; i < array.length; i++) { if (array[i] > max) { max = array[i]; } } return max; } /** * Gets the maximum of three {@code short} values. * * @param a value 1 * @param b value 2 * @param c value 3 * @return the largest of the values */ public static short max(short a, final short b, final short c) { if (b > a) { a = b; } if (c > a) { a = c; } return a; } /** * Returns the minimum value in an array. * * @param array an array, must not be null or empty * @return the minimum value in the array * @throws NullPointerException if {@code array} is {@code null} * @throws IllegalArgumentException if {@code array} is empty * @since 3.4 Changed signature from min(byte[]) to min(byte...) */ public static byte min(final byte... array) { // Validates input validateArray(array); // Finds and returns min byte min = array[0]; for (int i = 1; i < array.length; i++) { if (array[i] < min) { min = array[i]; } } return min; } /** * Gets the minimum of three {@code byte} values. * * @param a value 1 * @param b value 2 * @param c value 3 * @return the smallest of the values */ public static byte min(byte a, final byte b, final byte c) { if (b < a) { a = b; } if (c < a) { a = c; } return a; } /** * Returns the minimum value in an array. * * @param array an array, must not be null or empty * @return the minimum value in the array * @throws NullPointerException if {@code array} is {@code null} * @throws IllegalArgumentException if {@code array} is empty * @see IEEE754rUtils#min(double[]) IEEE754rUtils for a version of this method that handles NaN differently * @since 3.4 Changed signature from min(double[]) to min(double...) */ public static double min(final double... array) { // Validates input validateArray(array); // Finds and returns min double min = array[0]; for (int i = 1; i < array.length; i++) { if (Double.isNaN(array[i])) { return Double.NaN; } if (array[i] < min) { min = array[i]; } } return min; } /** * Gets the minimum of three {@code double} values. * *

If any value is {@code NaN}, {@code NaN} is * returned. Infinity is handled.

* * @param a value 1 * @param b value 2 * @param c value 3 * @return the smallest of the values * @see IEEE754rUtils#min(double, double, double) for a version of this method that handles NaN differently */ public static double min(final double a, final double b, final double c) { return Math.min(Math.min(a, b), c); } /** * Returns the minimum value in an array. * * @param array an array, must not be null or empty * @return the minimum value in the array * @throws NullPointerException if {@code array} is {@code null} * @throws IllegalArgumentException if {@code array} is empty * @see IEEE754rUtils#min(float[]) IEEE754rUtils for a version of this method that handles NaN differently * @since 3.4 Changed signature from min(float[]) to min(float...) */ public static float min(final float... array) { // Validates input validateArray(array); // Finds and returns min float min = array[0]; for (int i = 1; i < array.length; i++) { if (Float.isNaN(array[i])) { return Float.NaN; } if (array[i] < min) { min = array[i]; } } return min; } /** * Gets the minimum of three {@code float} values. * *

If any value is {@code NaN}, {@code NaN} is * returned. Infinity is handled.

* * @param a value 1 * @param b value 2 * @param c value 3 * @return the smallest of the values * @see IEEE754rUtils#min(float, float, float) for a version of this method that handles NaN differently */ public static float min(final float a, final float b, final float c) { return Math.min(Math.min(a, b), c); } /** * Returns the minimum value in an array. * * @param array an array, must not be null or empty * @return the minimum value in the array * @throws NullPointerException if {@code array} is {@code null} * @throws IllegalArgumentException if {@code array} is empty * @since 3.4 Changed signature from min(int[]) to min(int...) */ public static int min(final int... array) { // Validates input validateArray(array); // Finds and returns min int min = array[0]; for (int j = 1; j < array.length; j++) { if (array[j] < min) { min = array[j]; } } return min; } /** * Gets the minimum of three {@code int} values. * * @param a value 1 * @param b value 2 * @param c value 3 * @return the smallest of the values */ public static int min(int a, final int b, final int c) { if (b < a) { a = b; } if (c < a) { a = c; } return a; } /** * Returns the minimum value in an array. * * @param array an array, must not be null or empty * @return the minimum value in the array * @throws NullPointerException if {@code array} is {@code null} * @throws IllegalArgumentException if {@code array} is empty * @since 3.4 Changed signature from min(long[]) to min(long...) */ public static long min(final long... array) { // Validates input validateArray(array); // Finds and returns min long min = array[0]; for (int i = 1; i < array.length; i++) { if (array[i] < min) { min = array[i]; } } return min; } // 3 param min /** * Gets the minimum of three {@code long} values. * * @param a value 1 * @param b value 2 * @param c value 3 * @return the smallest of the values */ public static long min(long a, final long b, final long c) { if (b < a) { a = b; } if (c < a) { a = c; } return a; } /** * Returns the minimum value in an array. * * @param array an array, must not be null or empty * @return the minimum value in the array * @throws NullPointerException if {@code array} is {@code null} * @throws IllegalArgumentException if {@code array} is empty * @since 3.4 Changed signature from min(short[]) to min(short...) */ public static short min(final short... array) { // Validates input validateArray(array); // Finds and returns min short min = array[0]; for (int i = 1; i < array.length; i++) { if (array[i] < min) { min = array[i]; } } return min; } /** * Gets the minimum of three {@code short} values. * * @param a value 1 * @param b value 2 * @param c value 3 * @return the smallest of the values */ public static short min(short a, final short b, final short c) { if (b < a) { a = b; } if (c < a) { a = c; } return a; } /** * Converts a {@link String} to a {@code byte}, returning * {@code zero} if the conversion fails. * *

If the string is {@code null}, {@code zero} is returned.

* *
     *   NumberUtils.toByte(null) = 0
     *   NumberUtils.toByte("")   = 0
     *   NumberUtils.toByte("1")  = 1
     * 
* * @param str the string to convert, may be null * @return the byte represented by the string, or {@code zero} if * conversion fails * @since 2.5 */ public static byte toByte(final String str) { return toByte(str, (byte) 0); } /** * Converts a {@link String} to a {@code byte}, returning a * default value if the conversion fails. * *

If the string is {@code null}, the default value is returned.

* *
     *   NumberUtils.toByte(null, 1) = 1
     *   NumberUtils.toByte("", 1)   = 1
     *   NumberUtils.toByte("1", 0)  = 1
     * 
* * @param str the string to convert, may be null * @param defaultValue the default value * @return the byte represented by the string, or the default if conversion fails * @since 2.5 */ public static byte toByte(final String str, final byte defaultValue) { try { return Byte.parseByte(str); } catch (final RuntimeException e) { return defaultValue; } } /** * Converts a {@link BigDecimal} to a {@code double}. * *

If the {@link BigDecimal} {@code value} is * {@code null}, then the specified default value is returned.

* *
     *   NumberUtils.toDouble(null)                     = 0.0d
     *   NumberUtils.toDouble(BigDecimal.valueOf(8.5d)) = 8.5d
     * 
* * @param value the {@link BigDecimal} to convert, may be {@code null}. * @return the double represented by the {@link BigDecimal} or * {@code 0.0d} if the {@link BigDecimal} is {@code null}. * @since 3.8 */ public static double toDouble(final BigDecimal value) { return toDouble(value, 0.0d); } /** * Converts a {@link BigDecimal} to a {@code double}. * *

If the {@link BigDecimal} {@code value} is * {@code null}, then the specified default value is returned.

* *
     *   NumberUtils.toDouble(null, 1.1d)                     = 1.1d
     *   NumberUtils.toDouble(BigDecimal.valueOf(8.5d), 1.1d) = 8.5d
     * 
* * @param value the {@link BigDecimal} to convert, may be {@code null}. * @param defaultValue the default value * @return the double represented by the {@link BigDecimal} or the * defaultValue if the {@link BigDecimal} is {@code null}. * @since 3.8 */ public static double toDouble(final BigDecimal value, final double defaultValue) { return value == null ? defaultValue : value.doubleValue(); } /** * Converts a {@link String} to a {@code double}, returning * {@code 0.0d} if the conversion fails. * *

If the string {@code str} is {@code null}, * {@code 0.0d} is returned.

* *
     *   NumberUtils.toDouble(null)   = 0.0d
     *   NumberUtils.toDouble("")     = 0.0d
     *   NumberUtils.toDouble("1.5")  = 1.5d
     * 
* * @param str the string to convert, may be {@code null} * @return the double represented by the string, or {@code 0.0d} * if conversion fails * @since 2.1 */ public static double toDouble(final String str) { return toDouble(str, 0.0d); } /** * Converts a {@link String} to a {@code double}, returning a * default value if the conversion fails. * *

If the string {@code str} is {@code null}, the default * value is returned.

* *
     *   NumberUtils.toDouble(null, 1.1d)   = 1.1d
     *   NumberUtils.toDouble("", 1.1d)     = 1.1d
     *   NumberUtils.toDouble("1.5", 0.0d)  = 1.5d
     * 
* * @param str the string to convert, may be {@code null} * @param defaultValue the default value * @return the double represented by the string, or defaultValue * if conversion fails * @since 2.1 */ public static double toDouble(final String str, final double defaultValue) { try { return Double.parseDouble(str); } catch (final RuntimeException e) { return defaultValue; } } /** * Converts a {@link String} to a {@code float}, returning * {@code 0.0f} if the conversion fails. * *

If the string {@code str} is {@code null}, * {@code 0.0f} is returned.

* *
     *   NumberUtils.toFloat(null)   = 0.0f
     *   NumberUtils.toFloat("")     = 0.0f
     *   NumberUtils.toFloat("1.5")  = 1.5f
     * 
* * @param str the string to convert, may be {@code null} * @return the float represented by the string, or {@code 0.0f} * if conversion fails * @since 2.1 */ public static float toFloat(final String str) { return toFloat(str, 0.0f); } /** * Converts a {@link String} to a {@code float}, returning a * default value if the conversion fails. * *

If the string {@code str} is {@code null}, the default * value is returned.

* *
     *   NumberUtils.toFloat(null, 1.1f)   = 1.1f
     *   NumberUtils.toFloat("", 1.1f)     = 1.1f
     *   NumberUtils.toFloat("1.5", 0.0f)  = 1.5f
     * 
* * @param str the string to convert, may be {@code null} * @param defaultValue the default value * @return the float represented by the string, or defaultValue * if conversion fails * @since 2.1 */ public static float toFloat(final String str, final float defaultValue) { try { return Float.parseFloat(str); } catch (final RuntimeException e) { return defaultValue; } } /** * Converts a {@link String} to an {@code int}, returning * {@code zero} if the conversion fails. * *

If the string is {@code null}, {@code zero} is returned.

* *
     *   NumberUtils.toInt(null) = 0
     *   NumberUtils.toInt("")   = 0
     *   NumberUtils.toInt("1")  = 1
     * 
* * @param str the string to convert, may be null * @return the int represented by the string, or {@code zero} if * conversion fails * @since 2.1 */ public static int toInt(final String str) { return toInt(str, 0); } /** * Converts a {@link String} to an {@code int}, returning a * default value if the conversion fails. * *

If the string is {@code null}, the default value is returned.

* *
     *   NumberUtils.toInt(null, 1) = 1
     *   NumberUtils.toInt("", 1)   = 1
     *   NumberUtils.toInt("1", 0)  = 1
     * 
* * @param str the string to convert, may be null * @param defaultValue the default value * @return the int represented by the string, or the default if conversion fails * @since 2.1 */ public static int toInt(final String str, final int defaultValue) { try { return Integer.parseInt(str); } catch (final RuntimeException e) { return defaultValue; } } /** * Converts a {@link String} to a {@code long}, returning * {@code zero} if the conversion fails. * *

If the string is {@code null}, {@code zero} is returned.

* *
     *   NumberUtils.toLong(null) = 0L
     *   NumberUtils.toLong("")   = 0L
     *   NumberUtils.toLong("1")  = 1L
     * 
* * @param str the string to convert, may be null * @return the long represented by the string, or {@code 0} if * conversion fails * @since 2.1 */ public static long toLong(final String str) { return toLong(str, 0L); } /** * Converts a {@link String} to a {@code long}, returning a * default value if the conversion fails. * *

If the string is {@code null}, the default value is returned.

* *
     *   NumberUtils.toLong(null, 1L) = 1L
     *   NumberUtils.toLong("", 1L)   = 1L
     *   NumberUtils.toLong("1", 0L)  = 1L
     * 
* * @param str the string to convert, may be null * @param defaultValue the default value * @return the long represented by the string, or the default if conversion fails * @since 2.1 */ public static long toLong(final String str, final long defaultValue) { try { return Long.parseLong(str); } catch (final RuntimeException e) { return defaultValue; } } /** * Converts a {@link BigDecimal} to a {@link BigDecimal} with a scale of * two that has been rounded using {@code RoundingMode.HALF_EVEN}. If the supplied * {@code value} is null, then {@code BigDecimal.ZERO} is returned. * *

Note, the scale of a {@link BigDecimal} is the number of digits to the right of the * decimal point.

* * @param value the {@link BigDecimal} to convert, may be null. * @return the scaled, with appropriate rounding, {@link BigDecimal}. * @since 3.8 */ public static BigDecimal toScaledBigDecimal(final BigDecimal value) { return toScaledBigDecimal(value, INTEGER_TWO, RoundingMode.HALF_EVEN); } /** * Converts a {@link BigDecimal} to a {@link BigDecimal} whose scale is the * specified value with a {@link RoundingMode} applied. If the input {@code value} * is {@code null}, we simply return {@code BigDecimal.ZERO}. * * @param value the {@link BigDecimal} to convert, may be null. * @param scale the number of digits to the right of the decimal point. * @param roundingMode a rounding behavior for numerical operations capable of * discarding precision. * @return the scaled, with appropriate rounding, {@link BigDecimal}. * @since 3.8 */ public static BigDecimal toScaledBigDecimal(final BigDecimal value, final int scale, final RoundingMode roundingMode) { if (value == null) { return BigDecimal.ZERO; } return value.setScale( scale, roundingMode == null ? RoundingMode.HALF_EVEN : roundingMode ); } /** * Converts a {@link Double} to a {@link BigDecimal} with a scale of * two that has been rounded using {@code RoundingMode.HALF_EVEN}. If the supplied * {@code value} is null, then {@code BigDecimal.ZERO} is returned. * *

Note, the scale of a {@link BigDecimal} is the number of digits to the right of the * decimal point.

* * @param value the {@link Double} to convert, may be null. * @return the scaled, with appropriate rounding, {@link BigDecimal}. * @since 3.8 */ public static BigDecimal toScaledBigDecimal(final Double value) { return toScaledBigDecimal(value, INTEGER_TWO, RoundingMode.HALF_EVEN); } /** * Converts a {@link Double} to a {@link BigDecimal} whose scale is the * specified value with a {@link RoundingMode} applied. If the input {@code value} * is {@code null}, we simply return {@code BigDecimal.ZERO}. * * @param value the {@link Double} to convert, may be null. * @param scale the number of digits to the right of the decimal point. * @param roundingMode a rounding behavior for numerical operations capable of * discarding precision. * @return the scaled, with appropriate rounding, {@link BigDecimal}. * @since 3.8 */ public static BigDecimal toScaledBigDecimal(final Double value, final int scale, final RoundingMode roundingMode) { if (value == null) { return BigDecimal.ZERO; } return toScaledBigDecimal( BigDecimal.valueOf(value), scale, roundingMode ); } /** * Converts a {@link Float} to a {@link BigDecimal} with a scale of * two that has been rounded using {@code RoundingMode.HALF_EVEN}. If the supplied * {@code value} is null, then {@code BigDecimal.ZERO} is returned. * *

Note, the scale of a {@link BigDecimal} is the number of digits to the right of the * decimal point.

* * @param value the {@link Float} to convert, may be null. * @return the scaled, with appropriate rounding, {@link BigDecimal}. * @since 3.8 */ public static BigDecimal toScaledBigDecimal(final Float value) { return toScaledBigDecimal(value, INTEGER_TWO, RoundingMode.HALF_EVEN); } /** * Converts a {@link Float} to a {@link BigDecimal} whose scale is the * specified value with a {@link RoundingMode} applied. If the input {@code value} * is {@code null}, we simply return {@code BigDecimal.ZERO}. * * @param value the {@link Float} to convert, may be null. * @param scale the number of digits to the right of the decimal point. * @param roundingMode a rounding behavior for numerical operations capable of * discarding precision. * @return the scaled, with appropriate rounding, {@link BigDecimal}. * @since 3.8 */ public static BigDecimal toScaledBigDecimal(final Float value, final int scale, final RoundingMode roundingMode) { if (value == null) { return BigDecimal.ZERO; } return toScaledBigDecimal( BigDecimal.valueOf(value), scale, roundingMode ); } /** * Converts a {@link String} to a {@link BigDecimal} with a scale of * two that has been rounded using {@code RoundingMode.HALF_EVEN}. If the supplied * {@code value} is null, then {@code BigDecimal.ZERO} is returned. * *

Note, the scale of a {@link BigDecimal} is the number of digits to the right of the * decimal point.

* * @param value the {@link String} to convert, may be null. * @return the scaled, with appropriate rounding, {@link BigDecimal}. * @since 3.8 */ public static BigDecimal toScaledBigDecimal(final String value) { return toScaledBigDecimal(value, INTEGER_TWO, RoundingMode.HALF_EVEN); } /** * Converts a {@link String} to a {@link BigDecimal} whose scale is the * specified value with a {@link RoundingMode} applied. If the input {@code value} * is {@code null}, we simply return {@code BigDecimal.ZERO}. * * @param value the {@link String} to convert, may be null. * @param scale the number of digits to the right of the decimal point. * @param roundingMode a rounding behavior for numerical operations capable of * discarding precision. * @return the scaled, with appropriate rounding, {@link BigDecimal}. * @since 3.8 */ public static BigDecimal toScaledBigDecimal(final String value, final int scale, final RoundingMode roundingMode) { if (value == null) { return BigDecimal.ZERO; } return toScaledBigDecimal( createBigDecimal(value), scale, roundingMode ); } /** * Converts a {@link String} to a {@code short}, returning * {@code zero} if the conversion fails. * *

If the string is {@code null}, {@code zero} is returned.

* *
     *   NumberUtils.toShort(null) = 0
     *   NumberUtils.toShort("")   = 0
     *   NumberUtils.toShort("1")  = 1
     * 
* * @param str the string to convert, may be null * @return the short represented by the string, or {@code zero} if * conversion fails * @since 2.5 */ public static short toShort(final String str) { return toShort(str, (short) 0); } /** * Converts a {@link String} to an {@code short}, returning a * default value if the conversion fails. * *

If the string is {@code null}, the default value is returned.

* *
     *   NumberUtils.toShort(null, 1) = 1
     *   NumberUtils.toShort("", 1)   = 1
     *   NumberUtils.toShort("1", 0)  = 1
     * 
* * @param str the string to convert, may be null * @param defaultValue the default value * @return the short represented by the string, or the default if conversion fails * @since 2.5 */ public static short toShort(final String str, final short defaultValue) { try { return Short.parseShort(str); } catch (final RuntimeException e) { return defaultValue; } } /** * Checks if the specified array is neither null nor empty. * * @param array the array to check * @throws IllegalArgumentException if {@code array} is empty * @throws NullPointerException if {@code array} is {@code null} */ private static void validateArray(final Object array) { Objects.requireNonNull(array, "array"); Validate.isTrue(Array.getLength(array) != 0, "Array cannot be empty."); } private static boolean withDecimalsParsing(final String str, final int beginIdx) { int decimalPoints = 0; for (int i = beginIdx; i < str.length(); i++) { final char ch = str.charAt(i); final boolean isDecimalPoint = ch == '.'; if (isDecimalPoint) { decimalPoints++; } if (decimalPoints > 1) { return false; } if (!isDecimalPoint && !Character.isDigit(ch)) { return false; } } return true; } /** * {@link NumberUtils} instances should NOT be constructed in standard programming. * Instead, the class should be used as {@code NumberUtils.toInt("6");}. * *

This constructor is public to permit tools that require a JavaBean instance * to operate.

* * @deprecated TODO Make private in 4.0. */ @Deprecated public NumberUtils() { // empty } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy