All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math.analysis.polynomials.PolynomialsUtils Maven / Gradle / Ivy

Go to download

The Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 2.2
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math.analysis.polynomials;

import java.util.ArrayList;

import org.apache.commons.math.fraction.BigFraction;

/**
 * A collection of static methods that operate on or return polynomials.
 * 
 * @version $Revision: 760901 $ $Date: 2009-04-01 10:29:18 -0400 (Wed, 01 Apr 2009) $
 * @since 2.0
 */
public class PolynomialsUtils {

    /** Coefficients for Chebyshev polynomials. */
    private static final ArrayList CHEBYSHEV_COEFFICIENTS;

    /** Coefficients for Hermite polynomials. */
    private static final ArrayList HERMITE_COEFFICIENTS;

    /** Coefficients for Laguerre polynomials. */
    private static final ArrayList LAGUERRE_COEFFICIENTS;

    /** Coefficients for Legendre polynomials. */
    private static final ArrayList LEGENDRE_COEFFICIENTS;

    static {

        // initialize recurrence for Chebyshev polynomials
        // T0(X) = 1, T1(X) = 0 + 1 * X
        CHEBYSHEV_COEFFICIENTS = new ArrayList();
        CHEBYSHEV_COEFFICIENTS.add(BigFraction.ONE);
        CHEBYSHEV_COEFFICIENTS.add(BigFraction.ZERO);
        CHEBYSHEV_COEFFICIENTS.add(BigFraction.ONE);

        // initialize recurrence for Hermite polynomials
        // H0(X) = 1, H1(X) = 0 + 2 * X
        HERMITE_COEFFICIENTS = new ArrayList();
        HERMITE_COEFFICIENTS.add(BigFraction.ONE);
        HERMITE_COEFFICIENTS.add(BigFraction.ZERO);
        HERMITE_COEFFICIENTS.add(BigFraction.TWO);

        // initialize recurrence for Laguerre polynomials
        // L0(X) = 1, L1(X) = 1 - 1 * X
        LAGUERRE_COEFFICIENTS = new ArrayList();
        LAGUERRE_COEFFICIENTS.add(BigFraction.ONE);
        LAGUERRE_COEFFICIENTS.add(BigFraction.ONE);
        LAGUERRE_COEFFICIENTS.add(BigFraction.MINUS_ONE);

        // initialize recurrence for Legendre polynomials
        // P0(X) = 1, P1(X) = 0 + 1 * X
        LEGENDRE_COEFFICIENTS = new ArrayList();
        LEGENDRE_COEFFICIENTS.add(BigFraction.ONE);
        LEGENDRE_COEFFICIENTS.add(BigFraction.ZERO);
        LEGENDRE_COEFFICIENTS.add(BigFraction.ONE);

    }

    /**
     * Private constructor, to prevent instantiation.
     */
    private PolynomialsUtils() {
    }

    /**
     * Create a Chebyshev polynomial of the first kind.
     * 

Chebyshev * polynomials of the first kind are orthogonal polynomials. * They can be defined by the following recurrence relations: *

     *  T0(X)   = 1
     *  T1(X)   = X
     *  Tk+1(X) = 2X Tk(X) - Tk-1(X)
     * 

* @param degree degree of the polynomial * @return Chebyshev polynomial of specified degree */ public static PolynomialFunction createChebyshevPolynomial(final int degree) { return buildPolynomial(degree, CHEBYSHEV_COEFFICIENTS, new RecurrenceCoefficientsGenerator() { private final BigFraction[] coeffs = { BigFraction.ZERO, BigFraction.TWO, BigFraction.ONE }; /** {@inheritDoc} */ public BigFraction[] generate(int k) { return coeffs; } }); } /** * Create a Hermite polynomial. *

Hermite * polynomials are orthogonal polynomials. * They can be defined by the following recurrence relations: *

     *  H0(X)   = 1
     *  H1(X)   = 2X
     *  Hk+1(X) = 2X Hk(X) - 2k Hk-1(X)
     * 

* @param degree degree of the polynomial * @return Hermite polynomial of specified degree */ public static PolynomialFunction createHermitePolynomial(final int degree) { return buildPolynomial(degree, HERMITE_COEFFICIENTS, new RecurrenceCoefficientsGenerator() { /** {@inheritDoc} */ public BigFraction[] generate(int k) { return new BigFraction[] { BigFraction.ZERO, BigFraction.TWO, new BigFraction(2 * k)}; } }); } /** * Create a Laguerre polynomial. *

Laguerre * polynomials are orthogonal polynomials. * They can be defined by the following recurrence relations: *

     *        L0(X)   = 1
     *        L1(X)   = 1 - X
     *  (k+1) Lk+1(X) = (2k + 1 - X) Lk(X) - k Lk-1(X)
     * 

* @param degree degree of the polynomial * @return Laguerre polynomial of specified degree */ public static PolynomialFunction createLaguerrePolynomial(final int degree) { return buildPolynomial(degree, LAGUERRE_COEFFICIENTS, new RecurrenceCoefficientsGenerator() { /** {@inheritDoc} */ public BigFraction[] generate(int k) { final int kP1 = k + 1; return new BigFraction[] { new BigFraction(2 * k + 1, kP1), new BigFraction(-1, kP1), new BigFraction(k, kP1)}; } }); } /** * Create a Legendre polynomial. *

Legendre * polynomials are orthogonal polynomials. * They can be defined by the following recurrence relations: *

     *        P0(X)   = 1
     *        P1(X)   = X
     *  (k+1) Pk+1(X) = (2k+1) X Pk(X) - k Pk-1(X)
     * 

* @param degree degree of the polynomial * @return Legendre polynomial of specified degree */ public static PolynomialFunction createLegendrePolynomial(final int degree) { return buildPolynomial(degree, LEGENDRE_COEFFICIENTS, new RecurrenceCoefficientsGenerator() { /** {@inheritDoc} */ public BigFraction[] generate(int k) { final int kP1 = k + 1; return new BigFraction[] { BigFraction.ZERO, new BigFraction(k + kP1, kP1), new BigFraction(k, kP1)}; } }); } /** Get the coefficients array for a given degree. * @param degree degree of the polynomial * @param coefficients list where the computed coefficients are stored * @param generator recurrence coefficients generator * @return coefficients array */ private static PolynomialFunction buildPolynomial(final int degree, final ArrayList coefficients, final RecurrenceCoefficientsGenerator generator) { final int maxDegree = (int) Math.floor(Math.sqrt(2 * coefficients.size())) - 1; synchronized (PolynomialsUtils.class) { if (degree > maxDegree) { computeUpToDegree(degree, maxDegree, generator, coefficients); } } // coefficient for polynomial 0 is l [0] // coefficients for polynomial 1 are l [1] ... l [2] (degrees 0 ... 1) // coefficients for polynomial 2 are l [3] ... l [5] (degrees 0 ... 2) // coefficients for polynomial 3 are l [6] ... l [9] (degrees 0 ... 3) // coefficients for polynomial 4 are l[10] ... l[14] (degrees 0 ... 4) // coefficients for polynomial 5 are l[15] ... l[20] (degrees 0 ... 5) // coefficients for polynomial 6 are l[21] ... l[27] (degrees 0 ... 6) // ... final int start = degree * (degree + 1) / 2; final double[] a = new double[degree + 1]; for (int i = 0; i <= degree; ++i) { a[i] = coefficients.get(start + i).doubleValue(); } // build the polynomial return new PolynomialFunction(a); } /** Compute polynomial coefficients up to a given degree. * @param degree maximal degree * @param maxDegree current maximal degree * @param generator recurrence coefficients generator * @param coefficients list where the computed coefficients should be appended */ private static void computeUpToDegree(final int degree, final int maxDegree, final RecurrenceCoefficientsGenerator generator, final ArrayList coefficients) { int startK = (maxDegree - 1) * maxDegree / 2; for (int k = maxDegree; k < degree; ++k) { // start indices of two previous polynomials Pk(X) and Pk-1(X) int startKm1 = startK; startK += k; // Pk+1(X) = (a[0] + a[1] X) Pk(X) - a[2] Pk-1(X) BigFraction[] ai = generator.generate(k); BigFraction ck = coefficients.get(startK); BigFraction ckm1 = coefficients.get(startKm1); // degree 0 coefficient coefficients.add(ck.multiply(ai[0]).subtract(ckm1.multiply(ai[2]))); // degree 1 to degree k-1 coefficients for (int i = 1; i < k; ++i) { final BigFraction ckPrev = ck; ck = coefficients.get(startK + i); ckm1 = coefficients.get(startKm1 + i); coefficients.add(ck.multiply(ai[0]).add(ckPrev.multiply(ai[1])).subtract(ckm1.multiply(ai[2]))); } // degree k coefficient final BigFraction ckPrev = ck; ck = coefficients.get(startK + k); coefficients.add(ck.multiply(ai[0]).add(ckPrev.multiply(ai[1]))); // degree k+1 coefficient coefficients.add(ck.multiply(ai[1])); } } /** Interface for recurrence coefficients generation. */ private static interface RecurrenceCoefficientsGenerator { /** * Generate recurrence coefficients. * @param k highest degree of the polynomials used in the recurrence * @return an array of three coefficients such that * Pk+1(X) = (a[0] + a[1] X) Pk(X) - a[2] Pk-1(X) */ BigFraction[] generate(int k); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy