All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math.analysis.solvers.RiddersSolver Maven / Gradle / Ivy

Go to download

The Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 2.2
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math.analysis.solvers;

import org.apache.commons.math.ConvergenceException;
import org.apache.commons.math.FunctionEvaluationException;
import org.apache.commons.math.MaxIterationsExceededException;
import org.apache.commons.math.analysis.UnivariateRealFunction;
import org.apache.commons.math.util.MathUtils;

/**
 * Implements the 
 * Ridders' Method for root finding of real univariate functions. For
 * reference, see C. Ridders, A new algorithm for computing a single root
 * of a real continuous function , IEEE Transactions on Circuits and
 * Systems, 26 (1979), 979 - 980.
 * 

* The function should be continuous but not necessarily smooth.

* * @version $Revision: 799857 $ $Date: 2009-08-01 09:07:12 -0400 (Sat, 01 Aug 2009) $ * @since 1.2 */ public class RiddersSolver extends UnivariateRealSolverImpl { /** * Construct a solver for the given function. * * @param f function to solve * @deprecated as of 2.0 the function to solve is passed as an argument * to the {@link #solve(UnivariateRealFunction, double, double)} or * {@link UnivariateRealSolverImpl#solve(UnivariateRealFunction, double, double, double)} * method. */ @Deprecated public RiddersSolver(UnivariateRealFunction f) { super(f, 100, 1E-6); } /** * Construct a solver. */ public RiddersSolver() { super(100, 1E-6); } /** {@inheritDoc} */ @Deprecated public double solve(final double min, final double max) throws ConvergenceException, FunctionEvaluationException { return solve(f, min, max); } /** {@inheritDoc} */ @Deprecated public double solve(final double min, final double max, final double initial) throws ConvergenceException, FunctionEvaluationException { return solve(f, min, max, initial); } /** * Find a root in the given interval with initial value. *

* Requires bracketing condition.

* * @param f the function to solve * @param min the lower bound for the interval * @param max the upper bound for the interval * @param initial the start value to use * @return the point at which the function value is zero * @throws MaxIterationsExceededException if the maximum iteration count is exceeded * @throws FunctionEvaluationException if an error occurs evaluating the * function * @throws IllegalArgumentException if any parameters are invalid */ public double solve(final UnivariateRealFunction f, final double min, final double max, final double initial) throws MaxIterationsExceededException, FunctionEvaluationException { // check for zeros before verifying bracketing if (f.value(min) == 0.0) { return min; } if (f.value(max) == 0.0) { return max; } if (f.value(initial) == 0.0) { return initial; } verifyBracketing(min, max, f); verifySequence(min, initial, max); if (isBracketing(min, initial, f)) { return solve(f, min, initial); } else { return solve(f, initial, max); } } /** * Find a root in the given interval. *

* Requires bracketing condition.

* * @param f the function to solve * @param min the lower bound for the interval * @param max the upper bound for the interval * @return the point at which the function value is zero * @throws MaxIterationsExceededException if the maximum iteration count is exceeded * @throws FunctionEvaluationException if an error occurs evaluating the * function * @throws IllegalArgumentException if any parameters are invalid */ public double solve(final UnivariateRealFunction f, final double min, final double max) throws MaxIterationsExceededException, FunctionEvaluationException { // [x1, x2] is the bracketing interval in each iteration // x3 is the midpoint of [x1, x2] // x is the new root approximation and an endpoint of the new interval double x1, x2, x3, x, oldx, y1, y2, y3, y, delta, correction, tolerance; x1 = min; y1 = f.value(x1); x2 = max; y2 = f.value(x2); // check for zeros before verifying bracketing if (y1 == 0.0) { return min; } if (y2 == 0.0) { return max; } verifyBracketing(min, max, f); int i = 1; oldx = Double.POSITIVE_INFINITY; while (i <= maximalIterationCount) { // calculate the new root approximation x3 = 0.5 * (x1 + x2); y3 = f.value(x3); if (Math.abs(y3) <= functionValueAccuracy) { setResult(x3, i); return result; } delta = 1 - (y1 * y2) / (y3 * y3); // delta > 1 due to bracketing correction = (MathUtils.sign(y2) * MathUtils.sign(y3)) * (x3 - x1) / Math.sqrt(delta); x = x3 - correction; // correction != 0 y = f.value(x); // check for convergence tolerance = Math.max(relativeAccuracy * Math.abs(x), absoluteAccuracy); if (Math.abs(x - oldx) <= tolerance) { setResult(x, i); return result; } if (Math.abs(y) <= functionValueAccuracy) { setResult(x, i); return result; } // prepare the new interval for next iteration // Ridders' method guarantees x1 < x < x2 if (correction > 0.0) { // x1 < x < x3 if (MathUtils.sign(y1) + MathUtils.sign(y) == 0.0) { x2 = x; y2 = y; } else { x1 = x; x2 = x3; y1 = y; y2 = y3; } } else { // x3 < x < x2 if (MathUtils.sign(y2) + MathUtils.sign(y) == 0.0) { x1 = x; y1 = y; } else { x1 = x3; x2 = x; y1 = y3; y2 = y; } } oldx = x; i++; } throw new MaxIterationsExceededException(maximalIterationCount); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy