All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math.complex.Complex Maven / Gradle / Ivy

Go to download

The Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 2.2
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math.complex;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;

import org.apache.commons.math.FieldElement;
import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.util.MathUtils;

/**
 * Representation of a Complex number - a number which has both a 
 * real and imaginary part.
 * 

* Implementations of arithmetic operations handle NaN and * infinite values according to the rules for {@link java.lang.Double} * arithmetic, applying definitional formulas and returning NaN or * infinite values in real or imaginary parts as these arise in computation. * See individual method javadocs for details.

*

* {@link #equals} identifies all values with NaN in either real * or imaginary part - e.g.,

 * 1 + NaNi  == NaN + i == NaN + NaNi.

* * implements Serializable since 2.0 * * @version $Revision: 791237 $ $Date: 2009-07-05 08:53:13 -0400 (Sun, 05 Jul 2009) $ */ public class Complex implements FieldElement, Serializable { /** Serializable version identifier */ private static final long serialVersionUID = -6195664516687396620L; /** The square root of -1. A number representing "0.0 + 1.0i" */ public static final Complex I = new Complex(0.0, 1.0); /** A complex number representing "NaN + NaNi" */ public static final Complex NaN = new Complex(Double.NaN, Double.NaN); /** A complex number representing "+INF + INFi" */ public static final Complex INF = new Complex(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY); /** A complex number representing "1.0 + 0.0i" */ public static final Complex ONE = new Complex(1.0, 0.0); /** A complex number representing "0.0 + 0.0i" */ public static final Complex ZERO = new Complex(0.0, 0.0); /** * The imaginary part */ private final double imaginary; /** * The real part */ private final double real; /** * Record whether this complex number is equal to NaN */ private final transient boolean isNaN; /** * Record whether this complex number is infinite */ private final transient boolean isInfinite; /** * Create a complex number given the real and imaginary parts. * * @param real the real part * @param imaginary the imaginary part */ public Complex(double real, double imaginary) { super(); this.real = real; this.imaginary = imaginary; isNaN = Double.isNaN(real) || Double.isNaN(imaginary); isInfinite = !isNaN && (Double.isInfinite(real) || Double.isInfinite(imaginary)); } /** * Return the absolute value of this complex number. *

* Returns NaN if either real or imaginary part is * NaN and Double.POSITIVE_INFINITY if * neither part is NaN, but at least one part takes an infinite * value.

* * @return the absolute value */ public double abs() { if (isNaN()) { return Double.NaN; } if (isInfinite()) { return Double.POSITIVE_INFINITY; } if (Math.abs(real) < Math.abs(imaginary)) { if (imaginary == 0.0) { return Math.abs(real); } double q = real / imaginary; return (Math.abs(imaginary) * Math.sqrt(1 + q*q)); } else { if (real == 0.0) { return Math.abs(imaginary); } double q = imaginary / real; return (Math.abs(real) * Math.sqrt(1 + q*q)); } } /** * Return the sum of this complex number and the given complex number. *

* Uses the definitional formula *

     * (a + bi) + (c + di) = (a+c) + (b+d)i
     * 

*

* If either this or rhs has a NaN value in either part, * {@link #NaN} is returned; otherwise Inifinite and NaN values are * returned in the parts of the result according to the rules for * {@link java.lang.Double} arithmetic.

* * @param rhs the other complex number * @return the complex number sum * @throws NullPointerException if rhs is null */ public Complex add(Complex rhs) { return createComplex(real + rhs.getReal(), imaginary + rhs.getImaginary()); } /** * Return the conjugate of this complex number. The conjugate of * "A + Bi" is "A - Bi". *

* {@link #NaN} is returned if either the real or imaginary * part of this Complex number equals Double.NaN.

*

* If the imaginary part is infinite, and the real part is not NaN, * the returned value has infinite imaginary part of the opposite * sign - e.g. the conjugate of 1 + POSITIVE_INFINITY i * is 1 - NEGATIVE_INFINITY i

* * @return the conjugate of this Complex object */ public Complex conjugate() { if (isNaN()) { return NaN; } return createComplex(real, -imaginary); } /** * Return the quotient of this complex number and the given complex number. *

* Implements the definitional formula *


     *    a + bi          ac + bd + (bc - ad)i
     *    ----------- = -------------------------
     *    c + di               c2 + d2
     * 
* but uses * * prescaling of operands to limit the effects of overflows and * underflows in the computation.

*

* Infinite and NaN values are handled / returned according to the * following rules, applied in the order presented: *

    *
  • If either this or rhs has a NaN value in either part, * {@link #NaN} is returned.
  • *
  • If rhs equals {@link #ZERO}, {@link #NaN} is returned. *
  • *
  • If this and rhs are both infinite, * {@link #NaN} is returned.
  • *
  • If this is finite (i.e., has no infinite or NaN parts) and * rhs is infinite (one or both parts infinite), * {@link #ZERO} is returned.
  • *
  • If this is infinite and rhs is finite, NaN values are * returned in the parts of the result if the {@link java.lang.Double} * rules applied to the definitional formula force NaN results.
  • *

* * @param rhs the other complex number * @return the complex number quotient * @throws NullPointerException if rhs is null */ public Complex divide(Complex rhs) { if (isNaN() || rhs.isNaN()) { return NaN; } double c = rhs.getReal(); double d = rhs.getImaginary(); if (c == 0.0 && d == 0.0) { return NaN; } if (rhs.isInfinite() && !isInfinite()) { return ZERO; } if (Math.abs(c) < Math.abs(d)) { if (d == 0.0) { return createComplex(real/c, imaginary/c); } double q = c / d; double denominator = c * q + d; return createComplex((real * q + imaginary) / denominator, (imaginary * q - real) / denominator); } else { if (c == 0.0) { return createComplex(imaginary/d, -real/c); } double q = d / c; double denominator = d * q + c; return createComplex((imaginary * q + real) / denominator, (imaginary - real * q) / denominator); } } /** * Test for the equality of two Complex objects. *

* If both the real and imaginary parts of two Complex numbers * are exactly the same, and neither is Double.NaN, the two * Complex objects are considered to be equal.

*

* All NaN values are considered to be equal - i.e, if either * (or both) real and imaginary parts of the complex number are equal * to Double.NaN, the complex number is equal to * Complex.NaN.

* * @param other Object to test for equality to this * @return true if two Complex objects are equal, false if * object is null, not an instance of Complex, or * not equal to this Complex instance * */ @Override public boolean equals(Object other) { boolean ret; if (this == other) { ret = true; } else if (other == null) { ret = false; } else { try { Complex rhs = (Complex)other; if (rhs.isNaN()) { ret = this.isNaN(); } else { ret = (real == rhs.real) && (imaginary == rhs.imaginary); } } catch (ClassCastException ex) { // ignore exception ret = false; } } return ret; } /** * Get a hashCode for the complex number. *

* All NaN values have the same hash code.

* * @return a hash code value for this object */ @Override public int hashCode() { if (isNaN()) { return 7; } return 37 * (17 * MathUtils.hash(imaginary) + MathUtils.hash(real)); } /** * Access the imaginary part. * * @return the imaginary part */ public double getImaginary() { return imaginary; } /** * Access the real part. * * @return the real part */ public double getReal() { return real; } /** * Returns true if either or both parts of this complex number is NaN; * false otherwise * * @return true if either or both parts of this complex number is NaN; * false otherwise */ public boolean isNaN() { return isNaN; } /** * Returns true if either the real or imaginary part of this complex number * takes an infinite value (either Double.POSITIVE_INFINITY or * Double.NEGATIVE_INFINITY) and neither part * is NaN. * * @return true if one or both parts of this complex number are infinite * and neither part is NaN */ public boolean isInfinite() { return isInfinite; } /** * Return the product of this complex number and the given complex number. *

* Implements preliminary checks for NaN and infinity followed by * the definitional formula: *


     * (a + bi)(c + di) = (ac - bd) + (ad + bc)i
     * 
*

*

* Returns {@link #NaN} if either this or rhs has one or more * NaN parts. *

* Returns {@link #INF} if neither this nor rhs has one or more * NaN parts and if either this or rhs has one or more * infinite parts (same result is returned regardless of the sign of the * components). *

*

* Returns finite values in components of the result per the * definitional formula in all remaining cases. *

* * @param rhs the other complex number * @return the complex number product * @throws NullPointerException if rhs is null */ public Complex multiply(Complex rhs) { if (isNaN() || rhs.isNaN()) { return NaN; } if (Double.isInfinite(real) || Double.isInfinite(imaginary) || Double.isInfinite(rhs.real)|| Double.isInfinite(rhs.imaginary)) { // we don't use Complex.isInfinite() to avoid testing for NaN again return INF; } return createComplex(real * rhs.real - imaginary * rhs.imaginary, real * rhs.imaginary + imaginary * rhs.real); } /** * Return the product of this complex number and the given scalar number. *

* Implements preliminary checks for NaN and infinity followed by * the definitional formula: *


     * c(a + bi) = (ca) + (cb)i
     * 
*

*

* Returns {@link #NaN} if either this or rhs has one or more * NaN parts. *

* Returns {@link #INF} if neither this nor rhs has one or more * NaN parts and if either this or rhs has one or more * infinite parts (same result is returned regardless of the sign of the * components). *

*

* Returns finite values in components of the result per the * definitional formula in all remaining cases. *

* * @param rhs the scalar number * @return the complex number product */ public Complex multiply(double rhs) { if (isNaN() || Double.isNaN(rhs)) { return NaN; } if (Double.isInfinite(real) || Double.isInfinite(imaginary) || Double.isInfinite(rhs)) { // we don't use Complex.isInfinite() to avoid testing for NaN again return INF; } return createComplex(real * rhs, imaginary * rhs); } /** * Return the additive inverse of this complex number. *

* Returns Complex.NaN if either real or imaginary * part of this Complex number equals Double.NaN.

* * @return the negation of this complex number */ public Complex negate() { if (isNaN()) { return NaN; } return createComplex(-real, -imaginary); } /** * Return the difference between this complex number and the given complex * number. *

* Uses the definitional formula *

     * (a + bi) - (c + di) = (a-c) + (b-d)i
     * 

*

* If either this or rhs has a NaN value in either part, * {@link #NaN} is returned; otherwise inifinite and NaN values are * returned in the parts of the result according to the rules for * {@link java.lang.Double} arithmetic.

* * @param rhs the other complex number * @return the complex number difference * @throws NullPointerException if rhs is null */ public Complex subtract(Complex rhs) { if (isNaN() || rhs.isNaN()) { return NaN; } return createComplex(real - rhs.getReal(), imaginary - rhs.getImaginary()); } /** * Compute the * * inverse cosine of this complex number. *

* Implements the formula:

     *  acos(z) = -i (log(z + i (sqrt(1 - z2))))

*

* Returns {@link Complex#NaN} if either real or imaginary part of the * input argument is NaN or infinite.

* * @return the inverse cosine of this complex number * @since 1.2 */ public Complex acos() { if (isNaN()) { return Complex.NaN; } return this.add(this.sqrt1z().multiply(Complex.I)).log() .multiply(Complex.I.negate()); } /** * Compute the * * inverse sine of this complex number. *

* Implements the formula:

     *  asin(z) = -i (log(sqrt(1 - z2) + iz)) 

*

* Returns {@link Complex#NaN} if either real or imaginary part of the * input argument is NaN or infinite.

* * @return the inverse sine of this complex number. * @since 1.2 */ public Complex asin() { if (isNaN()) { return Complex.NaN; } return sqrt1z().add(this.multiply(Complex.I)).log() .multiply(Complex.I.negate()); } /** * Compute the * * inverse tangent of this complex number. *

* Implements the formula:

     *  atan(z) = (i/2) log((i + z)/(i - z)) 

*

* Returns {@link Complex#NaN} if either real or imaginary part of the * input argument is NaN or infinite.

* * @return the inverse tangent of this complex number * @since 1.2 */ public Complex atan() { if (isNaN()) { return Complex.NaN; } return this.add(Complex.I).divide(Complex.I.subtract(this)).log() .multiply(Complex.I.divide(createComplex(2.0, 0.0))); } /** * Compute the * * cosine * of this complex number. *

* Implements the formula:

     *  cos(a + bi) = cos(a)cosh(b) - sin(a)sinh(b)i
* where the (real) functions on the right-hand side are * {@link java.lang.Math#sin}, {@link java.lang.Math#cos}, * {@link MathUtils#cosh} and {@link MathUtils#sinh}.

*

* Returns {@link Complex#NaN} if either real or imaginary part of the * input argument is NaN.

*

* Infinite values in real or imaginary parts of the input may result in * infinite or NaN values returned in parts of the result.

     * Examples: 
     * 
     * cos(1 ± INFINITY i) = 1 ∓ INFINITY i
     * cos(±INFINITY + i) = NaN + NaN i
     * cos(±INFINITY ± INFINITY i) = NaN + NaN i

* * @return the cosine of this complex number * @since 1.2 */ public Complex cos() { if (isNaN()) { return Complex.NaN; } return createComplex(Math.cos(real) * MathUtils.cosh(imaginary), -Math.sin(real) * MathUtils.sinh(imaginary)); } /** * Compute the * * hyperbolic cosine of this complex number. *

* Implements the formula:

     *  cosh(a + bi) = cosh(a)cos(b) + sinh(a)sin(b)i
* where the (real) functions on the right-hand side are * {@link java.lang.Math#sin}, {@link java.lang.Math#cos}, * {@link MathUtils#cosh} and {@link MathUtils#sinh}.

*

* Returns {@link Complex#NaN} if either real or imaginary part of the * input argument is NaN.

*

* Infinite values in real or imaginary parts of the input may result in * infinite or NaN values returned in parts of the result.

     * Examples: 
     * 
     * cosh(1 ± INFINITY i) = NaN + NaN i
     * cosh(±INFINITY + i) = INFINITY ± INFINITY i
     * cosh(±INFINITY ± INFINITY i) = NaN + NaN i

* * @return the hyperbolic cosine of this complex number. * @since 1.2 */ public Complex cosh() { if (isNaN()) { return Complex.NaN; } return createComplex(MathUtils.cosh(real) * Math.cos(imaginary), MathUtils.sinh(real) * Math.sin(imaginary)); } /** * Compute the * * exponential function of this complex number. *

* Implements the formula:

     *  exp(a + bi) = exp(a)cos(b) + exp(a)sin(b)i
* where the (real) functions on the right-hand side are * {@link java.lang.Math#exp}, {@link java.lang.Math#cos}, and * {@link java.lang.Math#sin}.

*

* Returns {@link Complex#NaN} if either real or imaginary part of the * input argument is NaN.

*

* Infinite values in real or imaginary parts of the input may result in * infinite or NaN values returned in parts of the result.

     * Examples: 
     * 
     * exp(1 ± INFINITY i) = NaN + NaN i
     * exp(INFINITY + i) = INFINITY + INFINITY i
     * exp(-INFINITY + i) = 0 + 0i
     * exp(±INFINITY ± INFINITY i) = NaN + NaN i

* * @return ethis * @since 1.2 */ public Complex exp() { if (isNaN()) { return Complex.NaN; } double expReal = Math.exp(real); return createComplex(expReal * Math.cos(imaginary), expReal * Math.sin(imaginary)); } /** * Compute the * * natural logarithm of this complex number. *

* Implements the formula:

     *  log(a + bi) = ln(|a + bi|) + arg(a + bi)i
* where ln on the right hand side is {@link java.lang.Math#log}, * |a + bi| is the modulus, {@link Complex#abs}, and * arg(a + bi) = {@link java.lang.Math#atan2}(b, a)

*

* Returns {@link Complex#NaN} if either real or imaginary part of the * input argument is NaN.

*

* Infinite (or critical) values in real or imaginary parts of the input may * result in infinite or NaN values returned in parts of the result.

     * Examples: 
     * 
     * log(1 ± INFINITY i) = INFINITY ± (π/2)i
     * log(INFINITY + i) = INFINITY + 0i
     * log(-INFINITY + i) = INFINITY + πi
     * log(INFINITY ± INFINITY i) = INFINITY ± (π/4)i
     * log(-INFINITY ± INFINITY i) = INFINITY ± (3π/4)i
     * log(0 + 0i) = -INFINITY + 0i
     * 

* * @return ln of this complex number. * @since 1.2 */ public Complex log() { if (isNaN()) { return Complex.NaN; } return createComplex(Math.log(abs()), Math.atan2(imaginary, real)); } /** * Returns of value of this complex number raised to the power of x. *

* Implements the formula:

     *  yx = exp(x·log(y))
* where exp and log are {@link #exp} and * {@link #log}, respectively.

*

* Returns {@link Complex#NaN} if either real or imaginary part of the * input argument is NaN or infinite, or if y * equals {@link Complex#ZERO}.

* * @param x the exponent. * @return thisx * @throws NullPointerException if x is null * @since 1.2 */ public Complex pow(Complex x) { if (x == null) { throw new NullPointerException(); } return this.log().multiply(x).exp(); } /** * Compute the * * sine * of this complex number. *

* Implements the formula:

     *  sin(a + bi) = sin(a)cosh(b) - cos(a)sinh(b)i
* where the (real) functions on the right-hand side are * {@link java.lang.Math#sin}, {@link java.lang.Math#cos}, * {@link MathUtils#cosh} and {@link MathUtils#sinh}.

*

* Returns {@link Complex#NaN} if either real or imaginary part of the * input argument is NaN.

*

* Infinite values in real or imaginary parts of the input may result in * infinite or NaN values returned in parts of the result.

     * Examples: 
     * 
     * sin(1 ± INFINITY i) = 1 ± INFINITY i
     * sin(±INFINITY + i) = NaN + NaN i
     * sin(±INFINITY ± INFINITY i) = NaN + NaN i

* * @return the sine of this complex number. * @since 1.2 */ public Complex sin() { if (isNaN()) { return Complex.NaN; } return createComplex(Math.sin(real) * MathUtils.cosh(imaginary), Math.cos(real) * MathUtils.sinh(imaginary)); } /** * Compute the * * hyperbolic sine of this complex number. *

* Implements the formula:

     *  sinh(a + bi) = sinh(a)cos(b)) + cosh(a)sin(b)i
* where the (real) functions on the right-hand side are * {@link java.lang.Math#sin}, {@link java.lang.Math#cos}, * {@link MathUtils#cosh} and {@link MathUtils#sinh}.

*

* Returns {@link Complex#NaN} if either real or imaginary part of the * input argument is NaN.

*

* Infinite values in real or imaginary parts of the input may result in * infinite or NaN values returned in parts of the result.

     * Examples: 
     * 
     * sinh(1 ± INFINITY i) = NaN + NaN i
     * sinh(±INFINITY + i) = ± INFINITY + INFINITY i
     * sinh(±INFINITY ± INFINITY i) = NaN + NaN i

* * @return the hyperbolic sine of this complex number * @since 1.2 */ public Complex sinh() { if (isNaN()) { return Complex.NaN; } return createComplex(MathUtils.sinh(real) * Math.cos(imaginary), MathUtils.cosh(real) * Math.sin(imaginary)); } /** * Compute the * * square root of this complex number. *

* Implements the following algorithm to compute sqrt(a + bi): *

  1. Let t = sqrt((|a| + |a + bi|) / 2)
  2. *
  3. if  a ≥ 0 return t + (b/2t)i
         *  else return |b|/2t + sign(b)t i 
  4. *
* where
    *
  • |a| = {@link Math#abs}(a)
  • *
  • |a + bi| = {@link Complex#abs}(a + bi)
  • *
  • sign(b) = {@link MathUtils#indicator}(b) *

*

* Returns {@link Complex#NaN} if either real or imaginary part of the * input argument is NaN.

*

* Infinite values in real or imaginary parts of the input may result in * infinite or NaN values returned in parts of the result.

     * Examples: 
     * 
     * sqrt(1 ± INFINITY i) = INFINITY + NaN i
     * sqrt(INFINITY + i) = INFINITY + 0i
     * sqrt(-INFINITY + i) = 0 + INFINITY i
     * sqrt(INFINITY ± INFINITY i) = INFINITY + NaN i
     * sqrt(-INFINITY ± INFINITY i) = NaN ± INFINITY i
     * 

* * @return the square root of this complex number * @since 1.2 */ public Complex sqrt() { if (isNaN()) { return Complex.NaN; } if (real == 0.0 && imaginary == 0.0) { return createComplex(0.0, 0.0); } double t = Math.sqrt((Math.abs(real) + abs()) / 2.0); if (real >= 0.0) { return createComplex(t, imaginary / (2.0 * t)); } else { return createComplex(Math.abs(imaginary) / (2.0 * t), MathUtils.indicator(imaginary) * t); } } /** * Compute the * * square root of 1 - this2 for this complex * number. *

* Computes the result directly as * sqrt(Complex.ONE.subtract(z.multiply(z))).

*

* Returns {@link Complex#NaN} if either real or imaginary part of the * input argument is NaN.

*

* Infinite values in real or imaginary parts of the input may result in * infinite or NaN values returned in parts of the result.

* * @return the square root of 1 - this2 * @since 1.2 */ public Complex sqrt1z() { return createComplex(1.0, 0.0).subtract(this.multiply(this)).sqrt(); } /** * Compute the * * tangent of this complex number. *

* Implements the formula:

     * tan(a + bi) = sin(2a)/(cos(2a)+cosh(2b)) + [sinh(2b)/(cos(2a)+cosh(2b))]i
* where the (real) functions on the right-hand side are * {@link java.lang.Math#sin}, {@link java.lang.Math#cos}, * {@link MathUtils#cosh} and {@link MathUtils#sinh}.

*

* Returns {@link Complex#NaN} if either real or imaginary part of the * input argument is NaN.

*

* Infinite (or critical) values in real or imaginary parts of the input may * result in infinite or NaN values returned in parts of the result.

     * Examples: 
     * 
     * tan(1 ± INFINITY i) = 0 + NaN i
     * tan(±INFINITY + i) = NaN + NaN i
     * tan(±INFINITY ± INFINITY i) = NaN + NaN i
     * tan(±π/2 + 0 i) = ±INFINITY + NaN i

* * @return the tangent of this complex number * @since 1.2 */ public Complex tan() { if (isNaN()) { return Complex.NaN; } double real2 = 2.0 * real; double imaginary2 = 2.0 * imaginary; double d = Math.cos(real2) + MathUtils.cosh(imaginary2); return createComplex(Math.sin(real2) / d, MathUtils.sinh(imaginary2) / d); } /** * Compute the * * hyperbolic tangent of this complex number. *

* Implements the formula:

     * tan(a + bi) = sinh(2a)/(cosh(2a)+cos(2b)) + [sin(2b)/(cosh(2a)+cos(2b))]i
* where the (real) functions on the right-hand side are * {@link java.lang.Math#sin}, {@link java.lang.Math#cos}, * {@link MathUtils#cosh} and {@link MathUtils#sinh}.

*

* Returns {@link Complex#NaN} if either real or imaginary part of the * input argument is NaN.

*

* Infinite values in real or imaginary parts of the input may result in * infinite or NaN values returned in parts of the result.

     * Examples: 
     * 
     * tanh(1 ± INFINITY i) = NaN + NaN i
     * tanh(±INFINITY + i) = NaN + 0 i
     * tanh(±INFINITY ± INFINITY i) = NaN + NaN i
     * tanh(0 + (π/2)i) = NaN + INFINITY i

* * @return the hyperbolic tangent of this complex number * @since 1.2 */ public Complex tanh() { if (isNaN()) { return Complex.NaN; } double real2 = 2.0 * real; double imaginary2 = 2.0 * imaginary; double d = MathUtils.cosh(real2) + Math.cos(imaginary2); return createComplex(MathUtils.sinh(real2) / d, Math.sin(imaginary2) / d); } /** *

Compute the argument of this complex number. *

*

The argument is the angle phi between the positive real axis and the point * representing this number in the complex plane. The value returned is between -PI (not inclusive) * and PI (inclusive), with negative values returned for numbers with negative imaginary parts. *

*

If either real or imaginary part (or both) is NaN, NaN is returned. Infinite parts are handled * as java.Math.atan2 handles them, essentially treating finite parts as zero in the presence of * an infinite coordinate and returning a multiple of pi/4 depending on the signs of the infinite * parts. See the javadoc for java.Math.atan2 for full details.

* * @return the argument of this complex number */ public double getArgument() { return Math.atan2(getImaginary(), getReal()); } /** *

Computes the n-th roots of this complex number. *

*

The nth roots are defined by the formula:

     *  zk = abs 1/n (cos(phi + 2πk/n) + i (sin(phi + 2πk/n))
* for k=0, 1, ..., n-1, where abs and phi are * respectively the {@link #abs() modulus} and {@link #getArgument() argument} of this complex number. *

*

If one or both parts of this complex number is NaN, a list with just one element, * {@link #NaN} is returned.

*

if neither part is NaN, but at least one part is infinite, the result is a one-element * list containing {@link #INF}.

* * @param n degree of root * @return List all nth roots of this complex number * @throws IllegalArgumentException if parameter n is less than or equal to 0 * @since 2.0 */ public List nthRoot(int n) throws IllegalArgumentException { if (n <= 0) { throw MathRuntimeException.createIllegalArgumentException( "cannot compute nth root for null or negative n: {0}", n); } List result = new ArrayList(); if (isNaN()) { result.add(Complex.NaN); return result; } if (isInfinite()) { result.add(Complex.INF); return result; } // nth root of abs -- faster / more accurate to use a solver here? final double nthRootOfAbs = Math.pow(abs(), 1.0 / n); // Compute nth roots of complex number with k = 0, 1, ... n-1 final double nthPhi = getArgument()/n; final double slice = 2 * Math.PI / n; double innerPart = nthPhi; for (int k = 0; k < n ; k++) { // inner part final double realPart = nthRootOfAbs * Math.cos(innerPart); final double imaginaryPart = nthRootOfAbs * Math.sin(innerPart); result.add(createComplex(realPart, imaginaryPart)); innerPart += slice; } return result; } /** * Create a complex number given the real and imaginary parts. * * @param real the real part * @param imaginary the imaginary part * @return a new complex number instance * @since 1.2 */ protected Complex createComplex(double real, double imaginary) { return new Complex(real, imaginary); } /** *

Resolve the transient fields in a deserialized Complex Object.

*

Subclasses will need to override {@link #createComplex} to deserialize properly

* @return A Complex instance with all fields resolved. * @since 2.0 */ protected final Object readResolve() { return createComplex(real, imaginary); } /** {@inheritDoc} */ public ComplexField getField() { return ComplexField.getInstance(); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy