All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math.distribution.BinomialDistributionImpl Maven / Gradle / Ivy

Go to download

The Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 2.2
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math.distribution;

import java.io.Serializable;

import org.apache.commons.math.MathException;
import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.special.Beta;
import org.apache.commons.math.util.MathUtils;

/**
 * The default implementation of {@link BinomialDistribution}.
 *
 * @version $Revision: 772119 $ $Date: 2009-05-06 05:43:28 -0400 (Wed, 06 May 2009) $
 */
public class BinomialDistributionImpl
    extends AbstractIntegerDistribution
    implements BinomialDistribution, Serializable {

    /** Serializable version identifier */
    private static final long serialVersionUID = 6751309484392813623L;

    /** The number of trials. */
    private int numberOfTrials;

    /** The probability of success. */
    private double probabilityOfSuccess;

    /**
     * Create a binomial distribution with the given number of trials and
     * probability of success.
     * @param trials the number of trials.
     * @param p the probability of success.
     */
    public BinomialDistributionImpl(int trials, double p) {
        super();
        setNumberOfTrials(trials);
        setProbabilityOfSuccess(p);
    }

    /**
     * Access the number of trials for this distribution.
     * @return the number of trials.
     */
    public int getNumberOfTrials() {
        return numberOfTrials;
    }

    /**
     * Access the probability of success for this distribution.
     * @return the probability of success.
     */
    public double getProbabilityOfSuccess() {
        return probabilityOfSuccess;
    }

    /**
     * Change the number of trials for this distribution.
     * @param trials the new number of trials.
     * @throws IllegalArgumentException if trials is not a valid
     *         number of trials.
     */
    public void setNumberOfTrials(int trials) {
        if (trials < 0) {
            throw MathRuntimeException.createIllegalArgumentException(
                  "number of trials must be non-negative ({0})", trials);
        }
        numberOfTrials = trials;
    }

    /**
     * Change the probability of success for this distribution.
     * @param p the new probability of success.
     * @throws IllegalArgumentException if p is not a valid
     *         probability.
     */
    public void setProbabilityOfSuccess(double p) {
        if (p < 0.0 || p > 1.0) {
            throw MathRuntimeException.createIllegalArgumentException(
                  "{0} out of [{1}, {2}] range", p, 0.0, 1.0);
        }
        probabilityOfSuccess = p;
    }

    /**
     * Access the domain value lower bound, based on p, used to
     * bracket a PDF root.
     * 
     * @param p the desired probability for the critical value
     * @return domain value lower bound, i.e.
     *         P(X < lower bound) < p 
     */
    @Override
    protected int getDomainLowerBound(double p) {
        return -1;
    }

    /**
     * Access the domain value upper bound, based on p, used to
     * bracket a PDF root.
     * 
     * @param p the desired probability for the critical value
     * @return domain value upper bound, i.e.
     *         P(X < upper bound) > p 
     */
    @Override
    protected int getDomainUpperBound(double p) {
        return getNumberOfTrials();
    }

    /**
     * For this distribution, X, this method returns P(X ≤ x).
     * @param x the value at which the PDF is evaluated.
     * @return PDF for this distribution. 
     * @throws MathException if the cumulative probability can not be
     *            computed due to convergence or other numerical errors.
     */
    @Override
    public double cumulativeProbability(int x) throws MathException {
        double ret;
        if (x < 0) {
            ret = 0.0;
        } else if (x >= getNumberOfTrials()) {
            ret = 1.0;
        } else {
            ret =
                1.0 - Beta.regularizedBeta(
                        getProbabilityOfSuccess(),
                        x + 1.0,
                        getNumberOfTrials() - x);
        }
        return ret;
    }

    /**
     * For this distribution, X, this method returns P(X = x).
     * 
     * @param x the value at which the PMF is evaluated.
     * @return PMF for this distribution. 
     */
    public double probability(int x) {
        double ret;
        if (x < 0 || x > getNumberOfTrials()) {
            ret = 0.0;
        } else {
            ret = MathUtils.binomialCoefficientDouble(
                    getNumberOfTrials(), x) *
                  Math.pow(getProbabilityOfSuccess(), x) *
                  Math.pow(1.0 - getProbabilityOfSuccess(),
                        getNumberOfTrials() - x);
        }
        return ret;
    }
    
    /**
     * For this distribution, X, this method returns the largest x, such
     * that P(X ≤ x) ≤ p.
     * 

* Returns -1 for p=0 and Integer.MAX_VALUE for * p=1.

* * @param p the desired probability * @return the largest x such that P(X ≤ x) <= p * @throws MathException if the inverse cumulative probability can not be * computed due to convergence or other numerical errors. * @throws IllegalArgumentException if p < 0 or p > 1 */ @Override public int inverseCumulativeProbability(final double p) throws MathException { // handle extreme values explicitly if (p == 0) { return -1; } if (p == 1) { return Integer.MAX_VALUE; } // use default bisection impl return super.inverseCumulativeProbability(p); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy