All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math.distribution.ChiSquaredDistributionImpl Maven / Gradle / Ivy

Go to download

The Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 2.2
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math.distribution;

import java.io.Serializable;

import org.apache.commons.math.MathException;

/**
 * The default implementation of {@link ChiSquaredDistribution}
 *
 * @version $Revision: 762087 $ $Date: 2009-04-05 10:20:18 -0400 (Sun, 05 Apr 2009) $
 */
public class ChiSquaredDistributionImpl
    extends AbstractContinuousDistribution
    implements ChiSquaredDistribution, Serializable  {
    
    /** Serializable version identifier */
    private static final long serialVersionUID = -8352658048349159782L;

    /** Internal Gamma distribution. */    
    private GammaDistribution gamma;
    
    /**
     * Create a Chi-Squared distribution with the given degrees of freedom.
     * @param df degrees of freedom.
     */
    public ChiSquaredDistributionImpl(double df) {
        this(df, new GammaDistributionImpl(df / 2.0, 2.0));
    }
    
    /**
     * Create a Chi-Squared distribution with the given degrees of freedom.
     * @param df degrees of freedom.
     * @param g the underlying gamma distribution used to compute probabilities.
     * @since 1.2
     */
    public ChiSquaredDistributionImpl(double df, GammaDistribution g) {
        super();
        setGamma(g);
        setDegreesOfFreedom(df);
    }
    
    /**
     * Modify the degrees of freedom.
     * @param degreesOfFreedom the new degrees of freedom.
     */
    public void setDegreesOfFreedom(double degreesOfFreedom) {
        getGamma().setAlpha(degreesOfFreedom / 2.0);
    }
        
    /**
     * Access the degrees of freedom.
     * @return the degrees of freedom.
     */
    public double getDegreesOfFreedom() {
        return getGamma().getAlpha() * 2.0;
    }

    /**
     * Return the probability density for a particular point.
     *
     * @param x The point at which the density should be computed.
     * @return The pdf at point x.
     */
    public double density(Double x) {
        return gamma.density(x);
    }

    /**
     * For this distribution, X, this method returns P(X < x).
     * @param x the value at which the CDF is evaluated.
     * @return CDF for this distribution. 
     * @throws MathException if the cumulative probability can not be
     *            computed due to convergence or other numerical errors.
     */
    public double cumulativeProbability(double x) throws MathException {
        return getGamma().cumulativeProbability(x);
    }
    
    /**
     * For this distribution, X, this method returns the critical point x, such
     * that P(X < x) = p.
     * 

* Returns 0 for p=0 and Double.POSITIVE_INFINITY for p=1.

* * @param p the desired probability * @return x, such that P(X < x) = p * @throws MathException if the inverse cumulative probability can not be * computed due to convergence or other numerical errors. * @throws IllegalArgumentException if p is not a valid * probability. */ @Override public double inverseCumulativeProbability(final double p) throws MathException { if (p == 0) { return 0d; } if (p == 1) { return Double.POSITIVE_INFINITY; } return super.inverseCumulativeProbability(p); } /** * Access the domain value lower bound, based on p, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p the desired probability for the critical value * @return domain value lower bound, i.e. * P(X < lower bound) < p */ @Override protected double getDomainLowerBound(double p) { return Double.MIN_VALUE * getGamma().getBeta(); } /** * Access the domain value upper bound, based on p, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p the desired probability for the critical value * @return domain value upper bound, i.e. * P(X < upper bound) > p */ @Override protected double getDomainUpperBound(double p) { // NOTE: chi squared is skewed to the left // NOTE: therefore, P(X < μ) > .5 double ret; if (p < .5) { // use mean ret = getDegreesOfFreedom(); } else { // use max ret = Double.MAX_VALUE; } return ret; } /** * Access the initial domain value, based on p, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p the desired probability for the critical value * @return initial domain value */ @Override protected double getInitialDomain(double p) { // NOTE: chi squared is skewed to the left // NOTE: therefore, P(X < μ) > .5 double ret; if (p < .5) { // use 1/2 mean ret = getDegreesOfFreedom() * .5; } else { // use mean ret = getDegreesOfFreedom(); } return ret; } /** * Modify the underlying gamma distribution. The caller is responsible for * insuring the gamma distribution has the proper parameter settings. * @param g the new distribution. * @since 1.2 made public */ public void setGamma(GammaDistribution g) { this.gamma = g; } /** * Access the Gamma distribution. * @return the internal Gamma distribution. */ private GammaDistribution getGamma() { return gamma; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy