org.apache.commons.math.distribution.GammaDistributionImpl Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of commons-math Show documentation
Show all versions of commons-math Show documentation
The Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math.distribution;
import java.io.Serializable;
import org.apache.commons.math.MathException;
import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.special.Gamma;
/**
* The default implementation of {@link GammaDistribution}.
*
* @version $Revision: 772119 $ $Date: 2009-05-06 05:43:28 -0400 (Wed, 06 May 2009) $
*/
public class GammaDistributionImpl extends AbstractContinuousDistribution
implements GammaDistribution, Serializable {
/** Serializable version identifier */
private static final long serialVersionUID = -3239549463135430361L;
/** The shape parameter. */
private double alpha;
/** The scale parameter. */
private double beta;
/**
* Create a new gamma distribution with the given alpha and beta values.
* @param alpha the shape parameter.
* @param beta the scale parameter.
*/
public GammaDistributionImpl(double alpha, double beta) {
super();
setAlpha(alpha);
setBeta(beta);
}
/**
* For this distribution, X, this method returns P(X < x).
*
* The implementation of this method is based on:
*
* -
*
* Chi-Squared Distribution, equation (9).
* - Casella, G., & Berger, R. (1990). Statistical Inference.
* Belmont, CA: Duxbury Press.
*
*
* @param x the value at which the CDF is evaluated.
* @return CDF for this distribution.
* @throws MathException if the cumulative probability can not be
* computed due to convergence or other numerical errors.
*/
public double cumulativeProbability(double x) throws MathException{
double ret;
if (x <= 0.0) {
ret = 0.0;
} else {
ret = Gamma.regularizedGammaP(getAlpha(), x / getBeta());
}
return ret;
}
/**
* For this distribution, X, this method returns the critical point x, such
* that P(X < x) = p
.
*
* Returns 0 for p=0 and Double.POSITIVE_INFINITY
for p=1.
*
* @param p the desired probability
* @return x, such that P(X < x) = p
* @throws MathException if the inverse cumulative probability can not be
* computed due to convergence or other numerical errors.
* @throws IllegalArgumentException if p
is not a valid
* probability.
*/
@Override
public double inverseCumulativeProbability(final double p)
throws MathException {
if (p == 0) {
return 0d;
}
if (p == 1) {
return Double.POSITIVE_INFINITY;
}
return super.inverseCumulativeProbability(p);
}
/**
* Modify the shape parameter, alpha.
* @param alpha the new shape parameter.
* @throws IllegalArgumentException if alpha
is not positive.
*/
public void setAlpha(double alpha) {
if (alpha <= 0.0) {
throw MathRuntimeException.createIllegalArgumentException(
"alpha must be positive ({0})",
alpha);
}
this.alpha = alpha;
}
/**
* Access the shape parameter, alpha
* @return alpha.
*/
public double getAlpha() {
return alpha;
}
/**
* Modify the scale parameter, beta.
* @param beta the new scale parameter.
* @throws IllegalArgumentException if beta
is not positive.
*/
public void setBeta(double beta) {
if (beta <= 0.0) {
throw MathRuntimeException.createIllegalArgumentException(
"beta must be positive ({0})",
beta);
}
this.beta = beta;
}
/**
* Access the scale parameter, beta
* @return beta.
*/
public double getBeta() {
return beta;
}
/**
* Return the probability density for a particular point.
*
* @param x The point at which the density should be computed.
* @return The pdf at point x.
*/
public double density(Double x) {
if (x < 0) return 0;
return Math.pow(x / getBeta(), getAlpha() - 1) / getBeta() * Math.exp(-x / getBeta()) / Math.exp(Gamma.logGamma(getAlpha()));
}
/**
* Access the domain value lower bound, based on p
, used to
* bracket a CDF root. This method is used by
* {@link #inverseCumulativeProbability(double)} to find critical values.
*
* @param p the desired probability for the critical value
* @return domain value lower bound, i.e.
* P(X < lower bound) < p
*/
@Override
protected double getDomainLowerBound(double p) {
// TODO: try to improve on this estimate
return Double.MIN_VALUE;
}
/**
* Access the domain value upper bound, based on p
, used to
* bracket a CDF root. This method is used by
* {@link #inverseCumulativeProbability(double)} to find critical values.
*
* @param p the desired probability for the critical value
* @return domain value upper bound, i.e.
* P(X < upper bound) > p
*/
@Override
protected double getDomainUpperBound(double p) {
// TODO: try to improve on this estimate
// NOTE: gamma is skewed to the left
// NOTE: therefore, P(X < μ) > .5
double ret;
if (p < .5) {
// use mean
ret = getAlpha() * getBeta();
} else {
// use max value
ret = Double.MAX_VALUE;
}
return ret;
}
/**
* Access the initial domain value, based on p
, used to
* bracket a CDF root. This method is used by
* {@link #inverseCumulativeProbability(double)} to find critical values.
*
* @param p the desired probability for the critical value
* @return initial domain value
*/
@Override
protected double getInitialDomain(double p) {
// TODO: try to improve on this estimate
// Gamma is skewed to the left, therefore, P(X < μ) > .5
double ret;
if (p < .5) {
// use 1/2 mean
ret = getAlpha() * getBeta() * .5;
} else {
// use mean
ret = getAlpha() * getBeta();
}
return ret;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy