All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math.distribution.GammaDistributionImpl Maven / Gradle / Ivy

Go to download

The Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 2.2
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math.distribution;

import java.io.Serializable;

import org.apache.commons.math.MathException;
import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.special.Gamma;

/**
 * The default implementation of {@link GammaDistribution}.
 *
 * @version $Revision: 772119 $ $Date: 2009-05-06 05:43:28 -0400 (Wed, 06 May 2009) $
 */
public class GammaDistributionImpl extends AbstractContinuousDistribution
    implements GammaDistribution, Serializable  {

    /** Serializable version identifier */
    private static final long serialVersionUID = -3239549463135430361L;

    /** The shape parameter. */
    private double alpha;
    
    /** The scale parameter. */
    private double beta;
    
    /**
     * Create a new gamma distribution with the given alpha and beta values.
     * @param alpha the shape parameter.
     * @param beta the scale parameter.
     */
    public GammaDistributionImpl(double alpha, double beta) {
        super();
        setAlpha(alpha);
        setBeta(beta);
    }
    
    /**
     * For this distribution, X, this method returns P(X < x).
     * 
     * The implementation of this method is based on:
     * 
    *
  • * * Chi-Squared Distribution, equation (9).
  • *
  • Casella, G., & Berger, R. (1990). Statistical Inference. * Belmont, CA: Duxbury Press.
  • *
* * @param x the value at which the CDF is evaluated. * @return CDF for this distribution. * @throws MathException if the cumulative probability can not be * computed due to convergence or other numerical errors. */ public double cumulativeProbability(double x) throws MathException{ double ret; if (x <= 0.0) { ret = 0.0; } else { ret = Gamma.regularizedGammaP(getAlpha(), x / getBeta()); } return ret; } /** * For this distribution, X, this method returns the critical point x, such * that P(X < x) = p. *

* Returns 0 for p=0 and Double.POSITIVE_INFINITY for p=1.

* * @param p the desired probability * @return x, such that P(X < x) = p * @throws MathException if the inverse cumulative probability can not be * computed due to convergence or other numerical errors. * @throws IllegalArgumentException if p is not a valid * probability. */ @Override public double inverseCumulativeProbability(final double p) throws MathException { if (p == 0) { return 0d; } if (p == 1) { return Double.POSITIVE_INFINITY; } return super.inverseCumulativeProbability(p); } /** * Modify the shape parameter, alpha. * @param alpha the new shape parameter. * @throws IllegalArgumentException if alpha is not positive. */ public void setAlpha(double alpha) { if (alpha <= 0.0) { throw MathRuntimeException.createIllegalArgumentException( "alpha must be positive ({0})", alpha); } this.alpha = alpha; } /** * Access the shape parameter, alpha * @return alpha. */ public double getAlpha() { return alpha; } /** * Modify the scale parameter, beta. * @param beta the new scale parameter. * @throws IllegalArgumentException if beta is not positive. */ public void setBeta(double beta) { if (beta <= 0.0) { throw MathRuntimeException.createIllegalArgumentException( "beta must be positive ({0})", beta); } this.beta = beta; } /** * Access the scale parameter, beta * @return beta. */ public double getBeta() { return beta; } /** * Return the probability density for a particular point. * * @param x The point at which the density should be computed. * @return The pdf at point x. */ public double density(Double x) { if (x < 0) return 0; return Math.pow(x / getBeta(), getAlpha() - 1) / getBeta() * Math.exp(-x / getBeta()) / Math.exp(Gamma.logGamma(getAlpha())); } /** * Access the domain value lower bound, based on p, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p the desired probability for the critical value * @return domain value lower bound, i.e. * P(X < lower bound) < p */ @Override protected double getDomainLowerBound(double p) { // TODO: try to improve on this estimate return Double.MIN_VALUE; } /** * Access the domain value upper bound, based on p, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p the desired probability for the critical value * @return domain value upper bound, i.e. * P(X < upper bound) > p */ @Override protected double getDomainUpperBound(double p) { // TODO: try to improve on this estimate // NOTE: gamma is skewed to the left // NOTE: therefore, P(X < μ) > .5 double ret; if (p < .5) { // use mean ret = getAlpha() * getBeta(); } else { // use max value ret = Double.MAX_VALUE; } return ret; } /** * Access the initial domain value, based on p, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p the desired probability for the critical value * @return initial domain value */ @Override protected double getInitialDomain(double p) { // TODO: try to improve on this estimate // Gamma is skewed to the left, therefore, P(X < μ) > .5 double ret; if (p < .5) { // use 1/2 mean ret = getAlpha() * getBeta() * .5; } else { // use mean ret = getAlpha() * getBeta(); } return ret; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy