org.apache.commons.math.distribution.PoissonDistributionImpl Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of commons-math Show documentation
Show all versions of commons-math Show documentation
The Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math.distribution;
import java.io.Serializable;
import org.apache.commons.math.MathException;
import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.special.Gamma;
import org.apache.commons.math.util.MathUtils;
/**
* Implementation for the {@link PoissonDistribution}.
*
* @version $Revision: 772119 $ $Date: 2009-05-06 05:43:28 -0400 (Wed, 06 May 2009) $
*/
public class PoissonDistributionImpl extends AbstractIntegerDistribution
implements PoissonDistribution, Serializable {
/** Serializable version identifier */
private static final long serialVersionUID = -3349935121172596109L;
/** Distribution used to compute normal approximation. */
private NormalDistribution normal;
/**
* Holds the Poisson mean for the distribution.
*/
private double mean;
/**
* Create a new Poisson distribution with the given the mean.
* The mean value must be positive; otherwise an
* IllegalArgument
is thrown.
*
* @param p the Poisson mean
* @throws IllegalArgumentException if p ≤ 0
*/
public PoissonDistributionImpl(double p) {
this(p, new NormalDistributionImpl());
}
/**
* Create a new Poisson distribution with the given the mean.
* The mean value must be positive; otherwise an
* IllegalArgument
is thrown.
*
* @param p the Poisson mean
* @param z a normal distribution used to compute normal approximations.
* @throws IllegalArgumentException if p ≤ 0
* @since 1.2
*/
public PoissonDistributionImpl(double p, NormalDistribution z) {
super();
setNormal(z);
setMean(p);
}
/**
* Get the Poisson mean for the distribution.
*
* @return the Poisson mean for the distribution.
*/
public double getMean() {
return this.mean;
}
/**
* Set the Poisson mean for the distribution.
* The mean value must be positive; otherwise an
* IllegalArgument
is thrown.
*
* @param p the Poisson mean value
* @throws IllegalArgumentException if p ≤ 0
*/
public void setMean(double p) {
if (p <= 0) {
throw MathRuntimeException.createIllegalArgumentException(
"the Poisson mean must be positive ({0})",
p);
}
this.mean = p;
normal.setMean(p);
normal.setStandardDeviation(Math.sqrt(p));
}
/**
* The probability mass function P(X = x) for a Poisson distribution.
*
* @param x the value at which the probability density function is evaluated.
* @return the value of the probability mass function at x
*/
public double probability(int x) {
if (x < 0 || x == Integer.MAX_VALUE) {
return 0;
}
return Math.pow(getMean(), x) /
MathUtils.factorialDouble(x) * Math.exp(-mean);
}
/**
* The probability distribution function P(X <= x) for a Poisson distribution.
*
* @param x the value at which the PDF is evaluated.
* @return Poisson distribution function evaluated at x
* @throws MathException if the cumulative probability can not be
* computed due to convergence or other numerical errors.
*/
@Override
public double cumulativeProbability(int x) throws MathException {
if (x < 0) {
return 0;
}
if (x == Integer.MAX_VALUE) {
return 1;
}
return Gamma.regularizedGammaQ((double)x + 1, mean,
1E-12, Integer.MAX_VALUE);
}
/**
* Calculates the Poisson distribution function using a normal
* approximation. The N(mean, sqrt(mean))
* distribution is used to approximate the Poisson distribution.
*
* The computation uses "half-correction" -- evaluating the normal
* distribution function at x + 0.5
*
* @param x the upper bound, inclusive
* @return the distribution function value calculated using a normal approximation
* @throws MathException if an error occurs computing the normal approximation
*/
public double normalApproximateProbability(int x) throws MathException {
// calculate the probability using half-correction
return normal.cumulativeProbability(x + 0.5);
}
/**
* Access the domain value lower bound, based on p
, used to
* bracket a CDF root. This method is used by
* {@link #inverseCumulativeProbability(double)} to find critical values.
*
* @param p the desired probability for the critical value
* @return domain lower bound
*/
@Override
protected int getDomainLowerBound(double p) {
return 0;
}
/**
* Access the domain value upper bound, based on p
, used to
* bracket a CDF root. This method is used by
* {@link #inverseCumulativeProbability(double)} to find critical values.
*
* @param p the desired probability for the critical value
* @return domain upper bound
*/
@Override
protected int getDomainUpperBound(double p) {
return Integer.MAX_VALUE;
}
/**
* Modify the normal distribution used to compute normal approximations.
* The caller is responsible for insuring the normal distribution has the
* proper parameter settings.
* @param value the new distribution
* @since 1.2
*/
public void setNormal(NormalDistribution value) {
normal = value;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy