All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math.estimation.GaussNewtonEstimator Maven / Gradle / Ivy

Go to download

The Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 2.2
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math.estimation;

import java.io.Serializable;

import org.apache.commons.math.linear.InvalidMatrixException;
import org.apache.commons.math.linear.LUDecompositionImpl;
import org.apache.commons.math.linear.MatrixUtils;
import org.apache.commons.math.linear.RealMatrix;
import org.apache.commons.math.linear.RealVector;
import org.apache.commons.math.linear.ArrayRealVector;

/** 
 * This class implements a solver for estimation problems.
 *
 * 

This class solves estimation problems using a weighted least * squares criterion on the measurement residuals. It uses a * Gauss-Newton algorithm.

* * @version $Revision: 783702 $ $Date: 2009-06-11 04:54:02 -0400 (Thu, 11 Jun 2009) $ * @since 1.2 * @deprecated as of 2.0, everything in package org.apache.commons.math.estimation has * been deprecated and replaced by package org.apache.commons.math.optimization.general * */ @Deprecated public class GaussNewtonEstimator extends AbstractEstimator implements Serializable { /** Serializable version identifier */ private static final long serialVersionUID = 5485001826076289109L; /** Default threshold for cost steady state detection. */ private static final double DEFAULT_STEADY_STATE_THRESHOLD = 1.0e-6; /** Default threshold for cost convergence. */ private static final double DEFAULT_CONVERGENCE = 1.0e-6; /** Threshold for cost steady state detection. */ private double steadyStateThreshold; /** Threshold for cost convergence. */ private double convergence; /** Simple constructor with default settings. *

* The estimator is built with default values for all settings. *

* @see #DEFAULT_STEADY_STATE_THRESHOLD * @see #DEFAULT_CONVERGENCE * @see AbstractEstimator#DEFAULT_MAX_COST_EVALUATIONS */ public GaussNewtonEstimator() { this.steadyStateThreshold = DEFAULT_STEADY_STATE_THRESHOLD; this.convergence = DEFAULT_CONVERGENCE; } /** * Simple constructor. * *

This constructor builds an estimator and stores its convergence * characteristics.

* *

An estimator is considered to have converged whenever either * the criterion goes below a physical threshold under which * improvements are considered useless or when the algorithm is * unable to improve it (even if it is still high). The first * condition that is met stops the iterations.

* *

The fact an estimator has converged does not mean that the * model accurately fits the measurements. It only means no better * solution can be found, it does not mean this one is good. Such an * analysis is left to the caller.

* *

If neither conditions are fulfilled before a given number of * iterations, the algorithm is considered to have failed and an * {@link EstimationException} is thrown.

* * @param maxCostEval maximal number of cost evaluations allowed * @param convergence criterion threshold below which we do not need * to improve the criterion anymore * @param steadyStateThreshold steady state detection threshold, the * problem has converged has reached a steady state if * Math.abs(Jn - Jn-1) < * Jn × convergence, where Jn * and Jn-1 are the current and preceding criterion * values (square sum of the weighted residuals of considered measurements). */ public GaussNewtonEstimator(final int maxCostEval, final double convergence, final double steadyStateThreshold) { setMaxCostEval(maxCostEval); this.steadyStateThreshold = steadyStateThreshold; this.convergence = convergence; } /** * Set the convergence criterion threshold. * @param convergence criterion threshold below which we do not need * to improve the criterion anymore */ public void setConvergence(final double convergence) { this.convergence = convergence; } /** * Set the steady state detection threshold. *

* The problem has converged has reached a steady state if * Math.abs(Jn - Jn-1) < * Jn × convergence, where Jn * and Jn-1 are the current and preceding criterion * values (square sum of the weighted residuals of considered measurements). *

* @param steadyStateThreshold steady state detection threshold */ public void setSteadyStateThreshold(final double steadyStateThreshold) { this.steadyStateThreshold = steadyStateThreshold; } /** * Solve an estimation problem using a least squares criterion. * *

This method set the unbound parameters of the given problem * starting from their current values through several iterations. At * each step, the unbound parameters are changed in order to * minimize a weighted least square criterion based on the * measurements of the problem.

* *

The iterations are stopped either when the criterion goes * below a physical threshold under which improvement are considered * useless or when the algorithm is unable to improve it (even if it * is still high). The first condition that is met stops the * iterations. If the convergence it not reached before the maximum * number of iterations, an {@link EstimationException} is * thrown.

* * @param problem estimation problem to solve * @exception EstimationException if the problem cannot be solved * * @see EstimationProblem * */ @Override public void estimate(EstimationProblem problem) throws EstimationException { initializeEstimate(problem); // work matrices double[] grad = new double[parameters.length]; ArrayRealVector bDecrement = new ArrayRealVector(parameters.length); double[] bDecrementData = bDecrement.getDataRef(); RealMatrix wGradGradT = MatrixUtils.createRealMatrix(parameters.length, parameters.length); // iterate until convergence is reached double previous = Double.POSITIVE_INFINITY; do { // build the linear problem incrementJacobianEvaluationsCounter(); RealVector b = new ArrayRealVector(parameters.length); RealMatrix a = MatrixUtils.createRealMatrix(parameters.length, parameters.length); for (int i = 0; i < measurements.length; ++i) { if (! measurements [i].isIgnored()) { double weight = measurements[i].getWeight(); double residual = measurements[i].getResidual(); // compute the normal equation for (int j = 0; j < parameters.length; ++j) { grad[j] = measurements[i].getPartial(parameters[j]); bDecrementData[j] = weight * residual * grad[j]; } // build the contribution matrix for measurement i for (int k = 0; k < parameters.length; ++k) { double gk = grad[k]; for (int l = 0; l < parameters.length; ++l) { wGradGradT.setEntry(k, l, weight * gk * grad[l]); } } // update the matrices a = a.add(wGradGradT); b = b.add(bDecrement); } } try { // solve the linearized least squares problem RealVector dX = new LUDecompositionImpl(a).getSolver().solve(b); // update the estimated parameters for (int i = 0; i < parameters.length; ++i) { parameters[i].setEstimate(parameters[i].getEstimate() + dX.getEntry(i)); } } catch(InvalidMatrixException e) { throw new EstimationException("unable to solve: singular problem"); } previous = cost; updateResidualsAndCost(); } while ((getCostEvaluations() < 2) || (Math.abs(previous - cost) > (cost * steadyStateThreshold) && (Math.abs(cost) > convergence))); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy