All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math.analysis.solvers.UnivariateRealSolverImpl Maven / Gradle / Ivy

Go to download

The Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math.analysis.solvers;

import org.apache.commons.math.ConvergingAlgorithmImpl;
import org.apache.commons.math.FunctionEvaluationException;
import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.analysis.UnivariateRealFunction;
import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.ConvergenceException;
import org.apache.commons.math.exception.NullArgumentException;

/**
 * Provide a default implementation for several functions useful to generic
 * solvers.
 *
 * @version $Revision: 1070725 $ $Date: 2011-02-15 02:31:12 +0100 (mar. 15 févr. 2011) $
 * @deprecated in 2.2 (to be removed in 3.0).
 */
@Deprecated
public abstract class UnivariateRealSolverImpl
    extends ConvergingAlgorithmImpl implements UnivariateRealSolver {

    /** Maximum error of function. */
    protected double functionValueAccuracy;

    /** Default maximum error of function. */
    protected double defaultFunctionValueAccuracy;

    /** Indicates where a root has been computed. */
    protected boolean resultComputed = false;

    /** The last computed root. */
    protected double result;

    /** Value of the function at the last computed result. */
    protected double functionValue;

    /** The function to solve.
     * @deprecated as of 2.0 the function to solve is passed as an argument
     * to the {@link #solve(UnivariateRealFunction, double, double)} or
     * {@link UnivariateRealSolverImpl#solve(UnivariateRealFunction, double, double, double)}
     * method. */
    @Deprecated
    protected UnivariateRealFunction f;

    /**
     * Construct a solver with given iteration count and accuracy.
     *
     * @param f the function to solve.
     * @param defaultAbsoluteAccuracy maximum absolute error
     * @param defaultMaximalIterationCount maximum number of iterations
     * @throws IllegalArgumentException if f is null or the
     * defaultAbsoluteAccuracy is not valid
     * @deprecated as of 2.0 the function to solve is passed as an argument
     * to the {@link #solve(UnivariateRealFunction, double, double)} or
     * {@link UnivariateRealSolverImpl#solve(UnivariateRealFunction, double, double, double)}
     * method.
     */
    @Deprecated
    protected UnivariateRealSolverImpl(final UnivariateRealFunction f,
                                       final int defaultMaximalIterationCount,
                                       final double defaultAbsoluteAccuracy) {
        super(defaultMaximalIterationCount, defaultAbsoluteAccuracy);
        if (f == null) {
            throw new NullArgumentException(LocalizedFormats.FUNCTION);
        }
        this.f = f;
        this.defaultFunctionValueAccuracy = 1.0e-15;
        this.functionValueAccuracy = defaultFunctionValueAccuracy;
    }

    /**
     * Construct a solver with given iteration count and accuracy.
     *
     * @param defaultAbsoluteAccuracy maximum absolute error
     * @param defaultMaximalIterationCount maximum number of iterations
     * @throws IllegalArgumentException if f is null or the
     * defaultAbsoluteAccuracy is not valid
     */
    protected UnivariateRealSolverImpl(final int defaultMaximalIterationCount,
                                       final double defaultAbsoluteAccuracy) {
        super(defaultMaximalIterationCount, defaultAbsoluteAccuracy);
        this.defaultFunctionValueAccuracy = 1.0e-15;
        this.functionValueAccuracy = defaultFunctionValueAccuracy;
    }

    /** Check if a result has been computed.
     * @exception IllegalStateException if no result has been computed
     */
    protected void checkResultComputed() throws IllegalStateException {
        if (!resultComputed) {
            throw MathRuntimeException.createIllegalStateException(LocalizedFormats.NO_RESULT_AVAILABLE);
        }
    }

    /** {@inheritDoc} */
    public double getResult() {
        checkResultComputed();
        return result;
    }

    /** {@inheritDoc} */
    public double getFunctionValue() {
        checkResultComputed();
        return functionValue;
    }

    /** {@inheritDoc} */
    public void setFunctionValueAccuracy(final double accuracy) {
        functionValueAccuracy = accuracy;
    }

    /** {@inheritDoc} */
    public double getFunctionValueAccuracy() {
        return functionValueAccuracy;
    }

    /** {@inheritDoc} */
    public void resetFunctionValueAccuracy() {
        functionValueAccuracy = defaultFunctionValueAccuracy;
    }

    /**
     * Solve for a zero root in the given interval.
     * 

A solver may require that the interval brackets a single zero root. * Solvers that do require bracketing should be able to handle the case * where one of the endpoints is itself a root.

* * @param function the function to solve. * @param min the lower bound for the interval. * @param max the upper bound for the interval. * @param maxEval Maximum number of evaluations. * @return a value where the function is zero * @throws ConvergenceException if the maximum iteration count is exceeded * or the solver detects convergence problems otherwise. * @throws FunctionEvaluationException if an error occurs evaluating the function * @throws IllegalArgumentException if min > max or the endpoints do not * satisfy the requirements specified by the solver * @since 2.2 */ public double solve(int maxEval, UnivariateRealFunction function, double min, double max) throws ConvergenceException, FunctionEvaluationException { throw MathRuntimeException.createUnsupportedOperationException(LocalizedFormats.NOT_OVERRIDEN); } /** * Solve for a zero in the given interval, start at startValue. *

A solver may require that the interval brackets a single zero root. * Solvers that do require bracketing should be able to handle the case * where one of the endpoints is itself a root.

* * @param function the function to solve. * @param min the lower bound for the interval. * @param max the upper bound for the interval. * @param startValue the start value to use * @param maxEval Maximum number of evaluations. * @return a value where the function is zero * @throws ConvergenceException if the maximum iteration count is exceeded * or the solver detects convergence problems otherwise. * @throws FunctionEvaluationException if an error occurs evaluating the function * @throws IllegalArgumentException if min > max or the arguments do not * satisfy the requirements specified by the solver * @since 2.2 */ public double solve(int maxEval, UnivariateRealFunction function, double min, double max, double startValue) throws ConvergenceException, FunctionEvaluationException, IllegalArgumentException { throw MathRuntimeException.createUnsupportedOperationException(LocalizedFormats.NOT_OVERRIDEN); } /** * Convenience function for implementations. * * @param newResult the result to set * @param iterationCount the iteration count to set */ protected final void setResult(final double newResult, final int iterationCount) { this.result = newResult; this.iterationCount = iterationCount; this.resultComputed = true; } /** * Convenience function for implementations. * * @param x the result to set * @param fx the result to set * @param iterationCount the iteration count to set */ protected final void setResult(final double x, final double fx, final int iterationCount) { this.result = x; this.functionValue = fx; this.iterationCount = iterationCount; this.resultComputed = true; } /** * Convenience function for implementations. */ protected final void clearResult() { this.iterationCount = 0; this.resultComputed = false; } /** * Returns true iff the function takes opposite signs at the endpoints. * * @param lower the lower endpoint * @param upper the upper endpoint * @param function the function * @return true if f(lower) * f(upper) < 0 * @throws FunctionEvaluationException if an error occurs evaluating the function at the endpoints */ protected boolean isBracketing(final double lower, final double upper, final UnivariateRealFunction function) throws FunctionEvaluationException { final double f1 = function.value(lower); final double f2 = function.value(upper); return (f1 > 0 && f2 < 0) || (f1 < 0 && f2 > 0); } /** * Returns true if the arguments form a (strictly) increasing sequence * * @param start first number * @param mid second number * @param end third number * @return true if the arguments form an increasing sequence */ protected boolean isSequence(final double start, final double mid, final double end) { return (start < mid) && (mid < end); } /** * Verifies that the endpoints specify an interval, * throws IllegalArgumentException if not * * @param lower lower endpoint * @param upper upper endpoint * @throws IllegalArgumentException */ protected void verifyInterval(final double lower, final double upper) { if (lower >= upper) { throw MathRuntimeException.createIllegalArgumentException( LocalizedFormats.ENDPOINTS_NOT_AN_INTERVAL, lower, upper); } } /** * Verifies that lower < initial < upper * throws IllegalArgumentException if not * * @param lower lower endpoint * @param initial initial value * @param upper upper endpoint * @throws IllegalArgumentException */ protected void verifySequence(final double lower, final double initial, final double upper) { if (!isSequence(lower, initial, upper)) { throw MathRuntimeException.createIllegalArgumentException( LocalizedFormats.INVALID_INTERVAL_INITIAL_VALUE_PARAMETERS, lower, initial, upper); } } /** * Verifies that the endpoints specify an interval and the function takes * opposite signs at the endpoints, throws IllegalArgumentException if not * * @param lower lower endpoint * @param upper upper endpoint * @param function function * @throws IllegalArgumentException * @throws FunctionEvaluationException if an error occurs evaluating the function at the endpoints */ protected void verifyBracketing(final double lower, final double upper, final UnivariateRealFunction function) throws FunctionEvaluationException { verifyInterval(lower, upper); if (!isBracketing(lower, upper, function)) { throw MathRuntimeException.createIllegalArgumentException( LocalizedFormats.SAME_SIGN_AT_ENDPOINTS, lower, upper, function.value(lower), function.value(upper)); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy