All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math.genetics.GeneticAlgorithm Maven / Gradle / Ivy

Go to download

The Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math.genetics;

import org.apache.commons.math.random.RandomGenerator;
import org.apache.commons.math.random.JDKRandomGenerator;

/**
 * Implementation of a genetic algorithm. All factors that govern the operation
 * of the algorithm can be configured for a specific problem.
 *
 * @since 2.0
 * @version $Revision: 925812 $ $Date: 2010-03-21 16:49:31 +0100 (dim. 21 mars 2010) $
 */
public class GeneticAlgorithm {

    /**
     * Static random number generator shared by GA implementation classes.
     * Set the randomGenerator seed to get reproducible results.
     * Use {@link #setRandomGenerator(RandomGenerator)} to supply an alternative
     * to the default JDK-provided PRNG.
     */
    //@GuardedBy("this")
    private static RandomGenerator randomGenerator = new JDKRandomGenerator();

    /** the crossover policy used by the algorithm. */
    private final CrossoverPolicy crossoverPolicy;

    /** the rate of crossover for the algorithm. */
    private final double crossoverRate;

    /** the mutation policy used by the algorithm. */
    private final MutationPolicy mutationPolicy;

    /** the rate of mutation for the algorithm. */
    private final double mutationRate;

    /** the selection policy used by the algorithm. */
    private final SelectionPolicy selectionPolicy;

    /** the number of generations evolved to reach {@link StoppingCondition} in the last run. */
    private int generationsEvolved = 0;

    /**
     * @param crossoverPolicy The {@link CrossoverPolicy}
     * @param crossoverRate The crossover rate as a percentage (0-1 inclusive)
     * @param mutationPolicy The {@link MutationPolicy}
     * @param mutationRate The mutation rate as a percentage (0-1 inclusive)
     * @param selectionPolicy The {@link SelectionPolicy}
     */
    public GeneticAlgorithm(
            CrossoverPolicy crossoverPolicy, double crossoverRate,
            MutationPolicy mutationPolicy, double mutationRate,
            SelectionPolicy selectionPolicy) {
        if (crossoverRate < 0 || crossoverRate > 1) {
            throw new IllegalArgumentException("crossoverRate must be between 0 and 1");
        }
        if (mutationRate < 0 || mutationRate > 1) {
            throw new IllegalArgumentException("mutationRate must be between 0 and 1");
        }
        this.crossoverPolicy = crossoverPolicy;
        this.crossoverRate = crossoverRate;
        this.mutationPolicy = mutationPolicy;
        this.mutationRate = mutationRate;
        this.selectionPolicy = selectionPolicy;
    }

    /**
     * Set the (static) random generator.
     *
     * @param random random generator
     */
    public static synchronized void setRandomGenerator(RandomGenerator random) {
        randomGenerator = random;
    }

    /**
     * Returns the (static) random generator.
     *
     * @return the static random generator shared by GA implementation classes
     */
    public static synchronized RandomGenerator getRandomGenerator() {
        return randomGenerator;
    }

    /**
     * Evolve the given population. Evolution stops when the stopping condition
     * is satisfied. Updates the {@link #getGenerationsEvolved() generationsEvolved}
     * property with the number of generations evolved before the StoppingCondition
     * is satisfied.
     *
     * @param initial the initial, seed population.
     * @param condition the stopping condition used to stop evolution.
     * @return the population that satisfies the stopping condition.
     */
    public Population evolve(Population initial, StoppingCondition condition) {
        Population current = initial;
        generationsEvolved = 0;
        while (!condition.isSatisfied(current)) {
            current = nextGeneration(current);
            generationsEvolved++;
        }
        return current;
    }

    /**
     * 

Evolve the given population into the next generation.

*

    *
  1. Get nextGeneration population to fill from current * generation, using its nextGeneration method
  2. *
  3. Loop until new generation is filled:
  4. *
    • Apply configured SelectionPolicy to select a pair of parents * from current
    • *
    • With probability = {@link #getCrossoverRate()}, apply * configured {@link CrossoverPolicy} to parents
    • *
    • With probability = {@link #getMutationRate()}, apply * configured {@link MutationPolicy} to each of the offspring
    • *
    • Add offspring individually to nextGeneration, * space permitting
    • *
    *
  5. Return nextGeneration
  6. *
*

* * @param current the current population. * @return the population for the next generation. */ public Population nextGeneration(Population current) { Population nextGeneration = current.nextGeneration(); RandomGenerator randGen = getRandomGenerator(); while (nextGeneration.getPopulationSize() < nextGeneration.getPopulationLimit()) { // select parent chromosomes ChromosomePair pair = getSelectionPolicy().select(current); // crossover? if (randGen.nextDouble() < getCrossoverRate()) { // apply crossover policy to create two offspring pair = getCrossoverPolicy().crossover(pair.getFirst(), pair.getSecond()); } // mutation? if (randGen.nextDouble() < getMutationRate()) { // apply mutation policy to the chromosomes pair = new ChromosomePair( getMutationPolicy().mutate(pair.getFirst()), getMutationPolicy().mutate(pair.getSecond())); } // add the first chromosome to the population nextGeneration.addChromosome(pair.getFirst()); // is there still a place for the second chromosome? if (nextGeneration.getPopulationSize() < nextGeneration.getPopulationLimit()) { // add the second chromosome to the population nextGeneration.addChromosome(pair.getSecond()); } } return nextGeneration; } /** * Returns the crossover policy. * @return crossover policy */ public CrossoverPolicy getCrossoverPolicy() { return crossoverPolicy; } /** * Returns the crossover rate. * @return crossover rate */ public double getCrossoverRate() { return crossoverRate; } /** * Returns the mutation policy. * @return mutation policy */ public MutationPolicy getMutationPolicy() { return mutationPolicy; } /** * Returns the mutation rate. * @return mutation rate */ public double getMutationRate() { return mutationRate; } /** * Returns the selection policy. * @return selection policy */ public SelectionPolicy getSelectionPolicy() { return selectionPolicy; } /** * Returns the number of generations evolved to * reach {@link StoppingCondition} in the last run. * * @return number of generations evolved * @since 2.1 */ public int getGenerationsEvolved() { return generationsEvolved; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy