All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math.genetics.OnePointCrossover Maven / Gradle / Ivy

Go to download

The Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math.genetics;

import java.util.ArrayList;
import java.util.List;


/**
 * One point crossover policy. A random crossover point is selected and the
 * first part from each parent is copied to the corresponding child, and the
 * second parts are copied crosswise.
 *
 * Example:
 * 
 * -C- denotes a crossover point
 *                   -C-                                -C-
 * p1 = (1 0 1 0 0 1  | 0 1 1)    X    p2 = (0 1 1 0 1 0  | 1 1 1)
 *         \------------/ \-----/              \------------/ \-----/
 *            ||         (*)                       ||        (**)
 *            VV         (**)                      VV        (*)
 *      /------------\ /-----\              /------------\ /-----\
 * c1 = (1 0 1 0 0 1  | 1 1 1)    X    p2 = (0 1 1 0 1 0  | 0 1 1)
 * 
* * This policy works only on {@link AbstractListChromosome}, and therefore it * is parametrized by T. Moreover, the chromosomes must have same lengths. * * @param generic type of the {@link AbstractListChromosome}s for crossover * @since 2.0 * @version $Revision: 903046 $ $Date: 2010-01-26 03:07:26 +0100 (mar. 26 janv. 2010) $ * */ public class OnePointCrossover implements CrossoverPolicy { /** * Performs one point crossover. A random crossover point is selected and the * first part from each parent is copied to the corresponding child, and the * second parts are copied crosswise. * * Example: * -C- denotes a crossover point * -C- -C- * p1 = (1 0 1 0 0 1 | 0 1 1) X p2 = (0 1 1 0 1 0 | 1 1 1) * \------------/ \-----/ \------------/ \-----/ * || (*) || (**) * VV (**) VV (*) * /------------\ /-----\ /------------\ /-----\ * c1 = (1 0 1 0 0 1 | 1 1 1) X p2 = (0 1 1 0 1 0 | 0 1 1) * * @param first first parent (p1) * @param second second parent (p2) * @return pair of two children (c1,c2) */ @SuppressWarnings("unchecked") // OK because of instanceof checks public ChromosomePair crossover(Chromosome first, Chromosome second) { if (! (first instanceof AbstractListChromosome && second instanceof AbstractListChromosome)) { throw new IllegalArgumentException("One point crossover works on FixedLengthChromosomes only."); } return crossover((AbstractListChromosome) first, (AbstractListChromosome) second); } /** * Helper for {@link #crossover(Chromosome, Chromosome)}. Performs the actual crossover. * * @param first the first chromosome. * @param second the second chromosome. * @return the pair of new chromosomes that resulted from the crossover. */ private ChromosomePair crossover(AbstractListChromosome first, AbstractListChromosome second) { int length = first.getLength(); if (length != second.getLength()) throw new IllegalArgumentException("Both chromosomes must have same lengths."); // array representations of the parents List parent1Rep = first.getRepresentation(); List parent2Rep = second.getRepresentation(); // and of the children ArrayList child1Rep = new ArrayList (first.getLength()); ArrayList child2Rep = new ArrayList (second.getLength()); // select a crossover point at random (0 and length makes no sense) int crossoverIndex = 1 + (GeneticAlgorithm.getRandomGenerator().nextInt(length-2)); // copy the first part for (int i = 0; i < crossoverIndex; i++) { child1Rep.add(parent1Rep.get(i)); child2Rep.add(parent2Rep.get(i)); } // and switch the second part for (int i = crossoverIndex; i < length; i++) { child1Rep.add(parent2Rep.get(i)); child2Rep.add(parent1Rep.get(i)); } return new ChromosomePair( first.newFixedLengthChromosome(child1Rep), second.newFixedLengthChromosome(child2Rep) ); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy