All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math.linear.SingularValueDecompositionImpl Maven / Gradle / Ivy

Go to download

The Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math.linear;

import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.util.FastMath;

/**
 * Calculates the compact Singular Value Decomposition of a matrix.
 * 

* The Singular Value Decomposition of matrix A is a set of three matrices: U, * Σ and V such that A = U × Σ × VT. Let A be * a m × n matrix, then U is a m × p orthogonal matrix, Σ is a * p × p diagonal matrix with positive or null elements, V is a p × * n orthogonal matrix (hence VT is also orthogonal) where * p=min(m,n). *

* @version $Revision: 990655 $ $Date: 2010-08-29 23:49:40 +0200 (dim. 29 août 2010) $ * @since 2.0 */ public class SingularValueDecompositionImpl implements SingularValueDecomposition { /** Number of rows of the initial matrix. */ private int m; /** Number of columns of the initial matrix. */ private int n; /** Eigen decomposition of the tridiagonal matrix. */ private EigenDecomposition eigenDecomposition; /** Singular values. */ private double[] singularValues; /** Cached value of U. */ private RealMatrix cachedU; /** Cached value of UT. */ private RealMatrix cachedUt; /** Cached value of S. */ private RealMatrix cachedS; /** Cached value of V. */ private RealMatrix cachedV; /** Cached value of VT. */ private RealMatrix cachedVt; /** * Calculates the compact Singular Value Decomposition of the given matrix. * @param matrix * The matrix to decompose. * @exception InvalidMatrixException * (wrapping a * {@link org.apache.commons.math.ConvergenceException} if * algorithm fails to converge */ public SingularValueDecompositionImpl(final RealMatrix matrix) throws InvalidMatrixException { m = matrix.getRowDimension(); n = matrix.getColumnDimension(); cachedU = null; cachedS = null; cachedV = null; cachedVt = null; double[][] localcopy = matrix.getData(); double[][] matATA = new double[n][n]; // // create A^T*A // for (int i = 0; i < n; i++) { for (int j = i; j < n; j++) { matATA[i][j] = 0.0; for (int k = 0; k < m; k++) { matATA[i][j] += localcopy[k][i] * localcopy[k][j]; } matATA[j][i]=matATA[i][j]; } } double[][] matAAT = new double[m][m]; // // create A*A^T // for (int i = 0; i < m; i++) { for (int j = i; j < m; j++) { matAAT[i][j] = 0.0; for (int k = 0; k < n; k++) { matAAT[i][j] += localcopy[i][k] * localcopy[j][k]; } matAAT[j][i]=matAAT[i][j]; } } int p; if (m>=n) { p=n; // compute eigen decomposition of A^T*A eigenDecomposition = new EigenDecompositionImpl( new Array2DRowRealMatrix(matATA),1.0); singularValues = eigenDecomposition.getRealEigenvalues(); cachedV = eigenDecomposition.getV(); // compute eigen decomposition of A*A^T eigenDecomposition = new EigenDecompositionImpl( new Array2DRowRealMatrix(matAAT),1.0); cachedU = eigenDecomposition.getV().getSubMatrix(0, m - 1, 0, p - 1); } else { p=m; // compute eigen decomposition of A*A^T eigenDecomposition = new EigenDecompositionImpl( new Array2DRowRealMatrix(matAAT),1.0); singularValues = eigenDecomposition.getRealEigenvalues(); cachedU = eigenDecomposition.getV(); // compute eigen decomposition of A^T*A eigenDecomposition = new EigenDecompositionImpl( new Array2DRowRealMatrix(matATA),1.0); cachedV = eigenDecomposition.getV().getSubMatrix(0,n-1,0,p-1); } for (int i = 0; i < p; i++) { singularValues[i] = FastMath.sqrt(FastMath.abs(singularValues[i])); } // Up to this point, U and V are computed independently of each other. // There still a sign indetermination of each column of, say, U. // The sign is set such that A.V_i=sigma_i.U_i (i<=p) // The right sign corresponds to a positive dot product of A.V_i and U_i for (int i = 0; i < p; i++) { RealVector tmp = cachedU.getColumnVector(i); double product=matrix.operate(cachedV.getColumnVector(i)).dotProduct(tmp); if (product<0) { cachedU.setColumnVector(i, tmp.mapMultiply(-1.0)); } } } /** {@inheritDoc} */ public RealMatrix getU() throws InvalidMatrixException { // return the cached matrix return cachedU; } /** {@inheritDoc} */ public RealMatrix getUT() throws InvalidMatrixException { if (cachedUt == null) { cachedUt = getU().transpose(); } // return the cached matrix return cachedUt; } /** {@inheritDoc} */ public RealMatrix getS() throws InvalidMatrixException { if (cachedS == null) { // cache the matrix for subsequent calls cachedS = MatrixUtils.createRealDiagonalMatrix(singularValues); } return cachedS; } /** {@inheritDoc} */ public double[] getSingularValues() throws InvalidMatrixException { return singularValues.clone(); } /** {@inheritDoc} */ public RealMatrix getV() throws InvalidMatrixException { // return the cached matrix return cachedV; } /** {@inheritDoc} */ public RealMatrix getVT() throws InvalidMatrixException { if (cachedVt == null) { cachedVt = getV().transpose(); } // return the cached matrix return cachedVt; } /** {@inheritDoc} */ public RealMatrix getCovariance(final double minSingularValue) { // get the number of singular values to consider final int p = singularValues.length; int dimension = 0; while ((dimension < p) && (singularValues[dimension] >= minSingularValue)) { ++dimension; } if (dimension == 0) { throw MathRuntimeException.createIllegalArgumentException( LocalizedFormats.TOO_LARGE_CUTOFF_SINGULAR_VALUE, minSingularValue, singularValues[0]); } final double[][] data = new double[dimension][p]; getVT().walkInOptimizedOrder(new DefaultRealMatrixPreservingVisitor() { /** {@inheritDoc} */ @Override public void visit(final int row, final int column, final double value) { data[row][column] = value / singularValues[row]; } }, 0, dimension - 1, 0, p - 1); RealMatrix jv = new Array2DRowRealMatrix(data, false); return jv.transpose().multiply(jv); } /** {@inheritDoc} */ public double getNorm() throws InvalidMatrixException { return singularValues[0]; } /** {@inheritDoc} */ public double getConditionNumber() throws InvalidMatrixException { return singularValues[0] / singularValues[singularValues.length - 1]; } /** {@inheritDoc} */ public int getRank() throws IllegalStateException { final double threshold = FastMath.max(m, n) * FastMath.ulp(singularValues[0]); for (int i = singularValues.length - 1; i >= 0; --i) { if (singularValues[i] > threshold) { return i + 1; } } return 0; } /** {@inheritDoc} */ public DecompositionSolver getSolver() { return new Solver(singularValues, getUT(), getV(), getRank() == Math .max(m, n)); } /** Specialized solver. */ private static class Solver implements DecompositionSolver { /** Pseudo-inverse of the initial matrix. */ private final RealMatrix pseudoInverse; /** Singularity indicator. */ private boolean nonSingular; /** * Build a solver from decomposed matrix. * @param singularValues * singularValues * @param uT * UT matrix of the decomposition * @param v * V matrix of the decomposition * @param nonSingular * singularity indicator */ private Solver(final double[] singularValues, final RealMatrix uT, final RealMatrix v, final boolean nonSingular) { double[][] suT = uT.getData(); for (int i = 0; i < singularValues.length; ++i) { final double a; if (singularValues[i]>0) { a=1.0 / singularValues[i]; } else { a=0.0; } final double[] suTi = suT[i]; for (int j = 0; j < suTi.length; ++j) { suTi[j] *= a; } } pseudoInverse = v.multiply(new Array2DRowRealMatrix(suT, false)); this.nonSingular = nonSingular; } /** * Solve the linear equation A × X = B in least square sense. *

* The m×n matrix A may not be square, the solution X is such that * ||A × X - B|| is minimal. *

* @param b * right-hand side of the equation A × X = B * @return a vector X that minimizes the two norm of A × X - B * @exception IllegalArgumentException * if matrices dimensions don't match */ public double[] solve(final double[] b) throws IllegalArgumentException { return pseudoInverse.operate(b); } /** * Solve the linear equation A × X = B in least square sense. *

* The m×n matrix A may not be square, the solution X is such that * ||A × X - B|| is minimal. *

* @param b * right-hand side of the equation A × X = B * @return a vector X that minimizes the two norm of A × X - B * @exception IllegalArgumentException * if matrices dimensions don't match */ public RealVector solve(final RealVector b) throws IllegalArgumentException { return pseudoInverse.operate(b); } /** * Solve the linear equation A × X = B in least square sense. *

* The m×n matrix A may not be square, the solution X is such that * ||A × X - B|| is minimal. *

* @param b * right-hand side of the equation A × X = B * @return a matrix X that minimizes the two norm of A × X - B * @exception IllegalArgumentException * if matrices dimensions don't match */ public RealMatrix solve(final RealMatrix b) throws IllegalArgumentException { return pseudoInverse.multiply(b); } /** * Check if the decomposed matrix is non-singular. * @return true if the decomposed matrix is non-singular */ public boolean isNonSingular() { return nonSingular; } /** * Get the pseudo-inverse of the decomposed matrix. * @return inverse matrix */ public RealMatrix getInverse() { return pseudoInverse; } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy