All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math.optimization.direct.NelderMead Maven / Gradle / Ivy

Go to download

The Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math.optimization.direct;

import java.util.Comparator;

import org.apache.commons.math.FunctionEvaluationException;
import org.apache.commons.math.optimization.OptimizationException;
import org.apache.commons.math.optimization.RealPointValuePair;

/**
 * This class implements the Nelder-Mead direct search method.
 *
 * @version $Revision: 1070725 $ $Date: 2011-02-15 02:31:12 +0100 (mar. 15 févr. 2011) $
 * @see MultiDirectional
 * @since 1.2
 */
public class NelderMead extends DirectSearchOptimizer {

    /** Reflection coefficient. */
    private final double rho;

    /** Expansion coefficient. */
    private final double khi;

    /** Contraction coefficient. */
    private final double gamma;

    /** Shrinkage coefficient. */
    private final double sigma;

    /** Build a Nelder-Mead optimizer with default coefficients.
     * 

The default coefficients are 1.0 for rho, 2.0 for khi and 0.5 * for both gamma and sigma.

*/ public NelderMead() { this.rho = 1.0; this.khi = 2.0; this.gamma = 0.5; this.sigma = 0.5; } /** Build a Nelder-Mead optimizer with specified coefficients. * @param rho reflection coefficient * @param khi expansion coefficient * @param gamma contraction coefficient * @param sigma shrinkage coefficient */ public NelderMead(final double rho, final double khi, final double gamma, final double sigma) { this.rho = rho; this.khi = khi; this.gamma = gamma; this.sigma = sigma; } /** {@inheritDoc} */ @Override protected void iterateSimplex(final Comparator comparator) throws FunctionEvaluationException, OptimizationException { incrementIterationsCounter(); // the simplex has n+1 point if dimension is n final int n = simplex.length - 1; // interesting values final RealPointValuePair best = simplex[0]; final RealPointValuePair secondBest = simplex[n-1]; final RealPointValuePair worst = simplex[n]; final double[] xWorst = worst.getPointRef(); // compute the centroid of the best vertices // (dismissing the worst point at index n) final double[] centroid = new double[n]; for (int i = 0; i < n; ++i) { final double[] x = simplex[i].getPointRef(); for (int j = 0; j < n; ++j) { centroid[j] += x[j]; } } final double scaling = 1.0 / n; for (int j = 0; j < n; ++j) { centroid[j] *= scaling; } // compute the reflection point final double[] xR = new double[n]; for (int j = 0; j < n; ++j) { xR[j] = centroid[j] + rho * (centroid[j] - xWorst[j]); } final RealPointValuePair reflected = new RealPointValuePair(xR, evaluate(xR), false); if ((comparator.compare(best, reflected) <= 0) && (comparator.compare(reflected, secondBest) < 0)) { // accept the reflected point replaceWorstPoint(reflected, comparator); } else if (comparator.compare(reflected, best) < 0) { // compute the expansion point final double[] xE = new double[n]; for (int j = 0; j < n; ++j) { xE[j] = centroid[j] + khi * (xR[j] - centroid[j]); } final RealPointValuePair expanded = new RealPointValuePair(xE, evaluate(xE), false); if (comparator.compare(expanded, reflected) < 0) { // accept the expansion point replaceWorstPoint(expanded, comparator); } else { // accept the reflected point replaceWorstPoint(reflected, comparator); } } else { if (comparator.compare(reflected, worst) < 0) { // perform an outside contraction final double[] xC = new double[n]; for (int j = 0; j < n; ++j) { xC[j] = centroid[j] + gamma * (xR[j] - centroid[j]); } final RealPointValuePair outContracted = new RealPointValuePair(xC, evaluate(xC), false); if (comparator.compare(outContracted, reflected) <= 0) { // accept the contraction point replaceWorstPoint(outContracted, comparator); return; } } else { // perform an inside contraction final double[] xC = new double[n]; for (int j = 0; j < n; ++j) { xC[j] = centroid[j] - gamma * (centroid[j] - xWorst[j]); } final RealPointValuePair inContracted = new RealPointValuePair(xC, evaluate(xC), false); if (comparator.compare(inContracted, worst) < 0) { // accept the contraction point replaceWorstPoint(inContracted, comparator); return; } } // perform a shrink final double[] xSmallest = simplex[0].getPointRef(); for (int i = 1; i < simplex.length; ++i) { final double[] x = simplex[i].getPoint(); for (int j = 0; j < n; ++j) { x[j] = xSmallest[j] + sigma * (x[j] - xSmallest[j]); } simplex[i] = new RealPointValuePair(x, Double.NaN, false); } evaluateSimplex(comparator); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy