All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math.optimization.fitting.GaussianFunction Maven / Gradle / Ivy

Go to download

The Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math.optimization.fitting;

import java.io.Serializable;

import org.apache.commons.math.analysis.DifferentiableUnivariateRealFunction;
import org.apache.commons.math.analysis.UnivariateRealFunction;
import org.apache.commons.math.exception.DimensionMismatchException;
import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.exception.ZeroException;
import org.apache.commons.math.exception.NullArgumentException;

/**
 * A Gaussian function.  Specifically:
 * 

* f(x) = a + b*exp(-((x - c)^2 / (2*d^2))) *

* Notation key: *

    *
  • x^n: x raised to the power of n *
  • exp(x): e^x *
* References: * * * @see GaussianDerivativeFunction * @see ParametricGaussianFunction * @since 2.2 * @version $Revision: 1037327 $ $Date: 2010-11-20 21:57:37 +0100 (sam. 20 nov. 2010) $ */ public class GaussianFunction implements DifferentiableUnivariateRealFunction, Serializable { /** Serializable version identifier. */ private static final long serialVersionUID = -3195385616125629512L; /** Parameter a of this function. */ private final double a; /** Parameter b of this function. */ private final double b; /** Parameter c of this function. */ private final double c; /** Parameter d of this function. */ private final double d; /** * Constructs an instance with the specified parameters. * * @param a a parameter value * @param b b parameter value * @param c c parameter value * @param d d parameter value * * @throws IllegalArgumentException if d is 0 */ public GaussianFunction(double a, double b, double c, double d) { if (d == 0.0) { throw new ZeroException(); } this.a = a; this.b = b; this.c = c; this.d = d; } /** * Constructs an instance with the specified parameters. * * @param parameters a, b, c, and d * parameter values * * @throws IllegalArgumentException if parameters is null, * parameters length is not 4, or if * parameters[3] is 0 */ public GaussianFunction(double[] parameters) { if (parameters == null) { throw new NullArgumentException(LocalizedFormats.INPUT_ARRAY); } if (parameters.length != 4) { throw new DimensionMismatchException(4, parameters.length); } if (parameters[3] == 0.0) { throw new ZeroException(); } this.a = parameters[0]; this.b = parameters[1]; this.c = parameters[2]; this.d = parameters[3]; } /** {@inheritDoc} */ public UnivariateRealFunction derivative() { return new GaussianDerivativeFunction(b, c, d); } /** {@inheritDoc} */ public double value(double x) { final double xMc = x - c; return a + b * Math.exp(-xMc * xMc / (2.0 * (d * d))); } /** * Gets a parameter value. * * @return a parameter value */ public double getA() { return a; } /** * Gets b parameter value. * * @return b parameter value */ public double getB() { return b; } /** * Gets c parameter value. * * @return c parameter value */ public double getC() { return c; } /** * Gets d parameter value. * * @return d parameter value */ public double getD() { return d; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy