![JAR search and dependency download from the Maven repository](/logo.png)
org.apache.commons.math3.analysis.FunctionUtils Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of commons-math3 Show documentation
Show all versions of commons-math3 Show documentation
The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.analysis;
import org.apache.commons.math3.analysis.function.Identity;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
/**
* Utilities for manipulating function objects.
*
* @version $Id$
* @since 3.0
*/
public class FunctionUtils {
/**
* Class only contains static methods.
*/
private FunctionUtils() {}
/**
* Compose functions. The functions in the argument list are composed
* sequentially, in the order given. For example, compose(f1,f2,f3)
* acts like f1(f2(f3(x))).
*
* @param f List of functions.
* @return the composite function.
*/
public static UnivariateFunction compose(final UnivariateFunction ... f) {
return new UnivariateFunction() {
/** {@inheritDoc} */
public double value(double x) {
double r = x;
for (int i = f.length - 1; i >= 0; i--) {
r = f[i].value(r);
}
return r;
}
};
}
/**
* Compose functions. The functions in the argument list are composed
* sequentially, in the order given. For example, compose(f1,f2,f3)
* acts like f1(f2(f3(x))).
*
* @param f List of functions.
* @return the composite function.
*/
public static DifferentiableUnivariateFunction compose(final DifferentiableUnivariateFunction ... f) {
return new DifferentiableUnivariateFunction() {
/** {@inheritDoc} */
public double value(double x) {
double r = x;
for (int i = f.length - 1; i >= 0; i--) {
r = f[i].value(r);
}
return r;
}
/** {@inheritDoc} */
public UnivariateFunction derivative() {
return new UnivariateFunction() {
/** {@inheritDoc} */
public double value(double x) {
double p = 1;
double r = x;
for (int i = f.length - 1; i >= 0; i--) {
p *= f[i].derivative().value(r);
r = f[i].value(r);
}
return p;
}
};
}
};
}
/**
* Add functions.
*
* @param f List of functions.
* @return a function that computes the sum of the functions.
*/
public static UnivariateFunction add(final UnivariateFunction ... f) {
return new UnivariateFunction() {
/** {@inheritDoc} */
public double value(double x) {
double r = f[0].value(x);
for (int i = 1; i < f.length; i++) {
r += f[i].value(x);
}
return r;
}
};
}
/**
* Add functions.
*
* @param f List of functions.
* @return a function that computes the sum of the functions.
*/
public static DifferentiableUnivariateFunction add(final DifferentiableUnivariateFunction ... f) {
return new DifferentiableUnivariateFunction() {
/** {@inheritDoc} */
public double value(double x) {
double r = f[0].value(x);
for (int i = 1; i < f.length; i++) {
r += f[i].value(x);
}
return r;
}
/** {@inheritDoc} */
public UnivariateFunction derivative() {
return new UnivariateFunction() {
/** {@inheritDoc} */
public double value(double x) {
double r = f[0].derivative().value(x);
for (int i = 1; i < f.length; i++) {
r += f[i].derivative().value(x);
}
return r;
}
};
}
};
}
/**
* Multiply functions.
*
* @param f List of functions.
* @return a function that computes the product of the functions.
*/
public static UnivariateFunction multiply(final UnivariateFunction ... f) {
return new UnivariateFunction() {
/** {@inheritDoc} */
public double value(double x) {
double r = f[0].value(x);
for (int i = 1; i < f.length; i++) {
r *= f[i].value(x);
}
return r;
}
};
}
/**
* Multiply functions.
*
* @param f List of functions.
* @return a function that computes the product of the functions.
*/
public static DifferentiableUnivariateFunction multiply(final DifferentiableUnivariateFunction ... f) {
return new DifferentiableUnivariateFunction() {
/** {@inheritDoc} */
public double value(double x) {
double r = f[0].value(x);
for (int i = 1; i < f.length; i++) {
r *= f[i].value(x);
}
return r;
}
/** {@inheritDoc} */
public UnivariateFunction derivative() {
return new UnivariateFunction() {
/** {@inheritDoc} */
public double value(double x) {
double sum = 0;
for (int i = 0; i < f.length; i++) {
double prod = f[i].derivative().value(x);
for (int j = 0; j < f.length; j++) {
if (i != j) {
prod *= f[j].value(x);
}
}
sum += prod;
}
return sum;
}
};
}
};
}
/**
* Returns the univariate function
* {@code h(x) = combiner(f(x), g(x))}.
*
* @param combiner Combiner function.
* @param f Function.
* @param g Function.
* @return the composite function.
*/
public static UnivariateFunction combine(final BivariateFunction combiner,
final UnivariateFunction f,
final UnivariateFunction g) {
return new UnivariateFunction() {
/** {@inheritDoc} */
public double value(double x) {
return combiner.value(f.value(x), g.value(x));
}
};
}
/**
* Returns a MultivariateFunction h(x[]) defined by
* h(x[]) = combiner(...combiner(combiner(initialValue,f(x[0])),f(x[1]))...),f(x[x.length-1]))
*
*
* @param combiner Combiner function.
* @param f Function.
* @param initialValue Initial value.
* @return a collector function.
*/
public static MultivariateFunction collector(final BivariateFunction combiner,
final UnivariateFunction f,
final double initialValue) {
return new MultivariateFunction() {
/** {@inheritDoc} */
public double value(double[] point) {
double result = combiner.value(initialValue, f.value(point[0]));
for (int i = 1; i < point.length; i++) {
result = combiner.value(result, f.value(point[i]));
}
return result;
}
};
}
/**
* Returns a MultivariateFunction h(x[]) defined by
* h(x[]) = combiner(...combiner(combiner(initialValue,x[0]),x[1])...),x[x.length-1])
*
*
* @param combiner Combiner function.
* @param initialValue Initial value.
* @return a collector function.
*/
public static MultivariateFunction collector(final BivariateFunction combiner,
final double initialValue) {
return collector(combiner, new Identity(), initialValue);
}
/**
* Create a unary function by fixing the first argument of a binary function.
*
* @param f Binary function.
* @param fixed Value to which the first argument of {@code f} is set.
* @return the unary function h(x) = f(fixed, x)
*/
public static UnivariateFunction fix1stArgument(final BivariateFunction f,
final double fixed) {
return new UnivariateFunction() {
/** {@inheritDoc} */
public double value(double x) {
return f.value(fixed, x);
}
};
}
/**
* Create a unary function by fixing the second argument of a binary function.
*
* @param f Binary function.
* @param fixed Value to which the second argument of {@code f} is set.
* @return the unary function h(x) = f(x, fixed)
*/
public static UnivariateFunction fix2ndArgument(final BivariateFunction f,
final double fixed) {
return new UnivariateFunction() {
/** {@inheritDoc} */
public double value(double x) {
return f.value(x, fixed);
}
};
}
/**
*
* Samples the specified univariate real function on the specified interval.
*
*
* The interval is divided equally into {@code n} sections and sample points
* are taken from {@code min} to {@code max - (max - min) / n}; therefore
* {@code f} is not sampled at the upper bound {@code max}.
*
*
* @param f the function to be sampled
* @param min the (inclusive) lower bound of the interval
* @param max the (exclusive) upper bound of the interval
* @param n the number of sample points
* @return the array of samples
* @throws NumberIsTooLargeException if the lower bound {@code min} is
* greater than, or equal to the upper bound {@code max}
* @throws NotStrictlyPositiveException if the number of sample points
* {@code n} is negative
*/
public static double[] sample(UnivariateFunction f,
double min, double max, int n) {
if (n <= 0) {
throw new NotStrictlyPositiveException(
LocalizedFormats.NOT_POSITIVE_NUMBER_OF_SAMPLES,
Integer.valueOf(n));
}
if (min >= max) {
throw new NumberIsTooLargeException(min, max, false);
}
double[] s = new double[n];
double h = (max - min) / n;
for (int i = 0; i < n; i++) {
s[i] = f.value(min + i * h);
}
return s;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy