All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.analysis.solvers.UnivariateSolverUtils Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 3.6.1
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.analysis.solvers;

import org.apache.commons.math3.analysis.UnivariateFunction;
import org.apache.commons.math3.exception.NoBracketingException;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.NullArgumentException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.util.FastMath;

/**
 * Utility routines for {@link UnivariateSolver} objects.
 *
 * @version $Id: UnivariateSolverUtils.java 1244107 2012-02-14 16:17:55Z erans $
 */
public class UnivariateSolverUtils {
    /**
     * Class contains only static methods.
     */
    private UnivariateSolverUtils() {}

    /**
     * Convenience method to find a zero of a univariate real function.  A default
     * solver is used.
     *
     * @param function Function.
     * @param x0 Lower bound for the interval.
     * @param x1 Upper bound for the interval.
     * @return a value where the function is zero.
     * @throws IllegalArgumentException if f is null or the endpoints do not
     * specify a valid interval.
     */
    public static double solve(UnivariateFunction function, double x0, double x1) {
        if (function == null) {
            throw new NullArgumentException(LocalizedFormats.FUNCTION);
        }
        final UnivariateSolver solver = new BrentSolver();
        return solver.solve(Integer.MAX_VALUE, function, x0, x1);
    }

    /**
     * Convenience method to find a zero of a univariate real function.  A default
     * solver is used.
     *
     * @param function Function.
     * @param x0 Lower bound for the interval.
     * @param x1 Upper bound for the interval.
     * @param absoluteAccuracy Accuracy to be used by the solver.
     * @return a value where the function is zero.
     * @throws IllegalArgumentException if {@code function} is {@code null},
     * the endpoints do not specify a valid interval, or the absolute accuracy
     * is not valid for the default solver.
     */
    public static double solve(UnivariateFunction function,
                               double x0, double x1,
                               double absoluteAccuracy) {
        if (function == null) {
            throw new NullArgumentException(LocalizedFormats.FUNCTION);
        }
        final UnivariateSolver solver = new BrentSolver(absoluteAccuracy);
        return solver.solve(Integer.MAX_VALUE, function, x0, x1);
    }

    /** Force a root found by a non-bracketing solver to lie on a specified side,
     * as if the solver was a bracketing one.
     * @param maxEval maximal number of new evaluations of the function
     * (evaluations already done for finding the root should have already been subtracted
     * from this number)
     * @param f function to solve
     * @param bracketing bracketing solver to use for shifting the root
     * @param baseRoot original root found by a previous non-bracketing solver
     * @param min minimal bound of the search interval
     * @param max maximal bound of the search interval
     * @param allowedSolution the kind of solutions that the root-finding algorithm may
     * accept as solutions.
     * @return a root approximation, on the specified side of the exact root
     */
    public static double forceSide(final int maxEval, final UnivariateFunction f,
                                   final BracketedUnivariateSolver bracketing,
                                   final double baseRoot, final double min, final double max,
                                   final AllowedSolution allowedSolution) {

        if (allowedSolution == AllowedSolution.ANY_SIDE) {
            // no further bracketing required
            return baseRoot;
        }

        // find a very small interval bracketing the root
        final double step = FastMath.max(bracketing.getAbsoluteAccuracy(),
                                         FastMath.abs(baseRoot * bracketing.getRelativeAccuracy()));
        double xLo        = FastMath.max(min, baseRoot - step);
        double fLo        = f.value(xLo);
        double xHi        = FastMath.min(max, baseRoot + step);
        double fHi        = f.value(xHi);
        int remainingEval = maxEval - 2;
        while (remainingEval > 0) {

            if ((fLo >= 0 && fHi <= 0) || (fLo <= 0 && fHi >= 0)) {
                // compute the root on the selected side
                return bracketing.solve(remainingEval, f, xLo, xHi, baseRoot, allowedSolution);
            }

            // try increasing the interval
            boolean changeLo = false;
            boolean changeHi = false;
            if (fLo < fHi) {
                // increasing function
                if (fLo >= 0) {
                    changeLo = true;
                } else {
                    changeHi = true;
                }
            } else if (fLo > fHi) {
                // decreasing function
                if (fLo <= 0) {
                    changeLo = true;
                } else {
                    changeHi = true;
                }
            } else {
                // unknown variation
                changeLo = true;
                changeHi = true;
            }

            // update the lower bound
            if (changeLo) {
                xLo = FastMath.max(min, xLo - step);
                fLo  = f.value(xLo);
                remainingEval--;
            }

            // update the higher bound
            if (changeHi) {
                xHi = FastMath.min(max, xHi + step);
                fHi  = f.value(xHi);
                remainingEval--;
            }

        }

        throw new NoBracketingException(LocalizedFormats.FAILED_BRACKETING,
                                        xLo, xHi, fLo, fHi,
                                        maxEval - remainingEval, maxEval, baseRoot,
                                        min, max);

    }

    /**
     * This method attempts to find two values a and b satisfying 
    *
  • lowerBound <= a < initial < b <= upperBound
  • *
  • f(a) * f(b) < 0
  • *
* If f is continuous on [a,b], this means that a * and b bracket a root of f. *

* The algorithm starts by setting * a := initial -1; b := initial +1, examines the value of the * function at a and b and keeps moving * the endpoints out by one unit each time through a loop that terminates * when one of the following happens:

    *
  • f(a) * f(b) < 0 -- success!
  • *
  • a = lower and b = upper * -- NoBracketingException
  • *
  • Integer.MAX_VALUE iterations elapse * -- NoBracketingException
  • *

*

* Note: this method can take * Integer.MAX_VALUE iterations to throw a * ConvergenceException. Unless you are confident that there * is a root between lowerBound and upperBound * near initial, it is better to use * {@link #bracket(UnivariateFunction, double, double, double, int)}, * explicitly specifying the maximum number of iterations.

* * @param function Function. * @param initial Initial midpoint of interval being expanded to * bracket a root. * @param lowerBound Lower bound (a is never lower than this value) * @param upperBound Upper bound (b never is greater than this * value). * @return a two-element array holding a and b. * @throws NoBracketingException if a root cannot be bracketted. * @throws IllegalArgumentException if function is null, maximumIterations * is not positive, or initial is not between lowerBound and upperBound. */ public static double[] bracket(UnivariateFunction function, double initial, double lowerBound, double upperBound) { return bracket(function, initial, lowerBound, upperBound, Integer.MAX_VALUE); } /** * This method attempts to find two values a and b satisfying
    *
  • lowerBound <= a < initial < b <= upperBound
  • *
  • f(a) * f(b) <= 0
  • *
* If f is continuous on [a,b], this means that a * and b bracket a root of f. *

* The algorithm starts by setting * a := initial -1; b := initial +1, examines the value of the * function at a and b and keeps moving * the endpoints out by one unit each time through a loop that terminates * when one of the following happens:

    *
  • f(a) * f(b) <= 0 -- success!
  • *
  • a = lower and b = upper * -- NoBracketingException
  • *
  • maximumIterations iterations elapse * -- NoBracketingException

* * @param function Function. * @param initial Initial midpoint of interval being expanded to * bracket a root. * @param lowerBound Lower bound (a is never lower than this value). * @param upperBound Upper bound (b never is greater than this * value). * @param maximumIterations Maximum number of iterations to perform * @return a two element array holding a and b. * @throws NoBracketingException if the algorithm fails to find a and b * satisfying the desired conditions. * @throws IllegalArgumentException if function is null, maximumIterations * is not positive, or initial is not between lowerBound and upperBound. */ public static double[] bracket(UnivariateFunction function, double initial, double lowerBound, double upperBound, int maximumIterations) { if (function == null) { throw new NullArgumentException(LocalizedFormats.FUNCTION); } if (maximumIterations <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.INVALID_MAX_ITERATIONS, maximumIterations); } verifySequence(lowerBound, initial, upperBound); double a = initial; double b = initial; double fa; double fb; int numIterations = 0; do { a = FastMath.max(a - 1.0, lowerBound); b = FastMath.min(b + 1.0, upperBound); fa = function.value(a); fb = function.value(b); ++numIterations; } while ((fa * fb > 0.0) && (numIterations < maximumIterations) && ((a > lowerBound) || (b < upperBound))); if (fa * fb > 0.0) { throw new NoBracketingException(LocalizedFormats.FAILED_BRACKETING, a, b, fa, fb, numIterations, maximumIterations, initial, lowerBound, upperBound); } return new double[] {a, b}; } /** * Compute the midpoint of two values. * * @param a first value. * @param b second value. * @return the midpoint. */ public static double midpoint(double a, double b) { return (a + b) * 0.5; } /** * Check whether the interval bounds bracket a root. That is, if the * values at the endpoints are not equal to zero, then the function takes * opposite signs at the endpoints. * * @param function Function. * @param lower Lower endpoint. * @param upper Upper endpoint. * @return {@code true} if the function values have opposite signs at the * given points. */ public static boolean isBracketing(UnivariateFunction function, final double lower, final double upper) { if (function == null) { throw new NullArgumentException(LocalizedFormats.FUNCTION); } final double fLo = function.value(lower); final double fHi = function.value(upper); return (fLo >= 0 && fHi <= 0) || (fLo <= 0 && fHi >= 0); } /** * Check whether the arguments form a (strictly) increasing sequence. * * @param start First number. * @param mid Second number. * @param end Third number. * @return {@code true} if the arguments form an increasing sequence. */ public static boolean isSequence(final double start, final double mid, final double end) { return (start < mid) && (mid < end); } /** * Check that the endpoints specify an interval. * * @param lower Lower endpoint. * @param upper Upper endpoint. * @throws NumberIsTooLargeException if {@code lower >= upper}. */ public static void verifyInterval(final double lower, final double upper) { if (lower >= upper) { throw new NumberIsTooLargeException(LocalizedFormats.ENDPOINTS_NOT_AN_INTERVAL, lower, upper, false); } } /** * Check that {@code lower < initial < upper}. * * @param lower Lower endpoint. * @param initial Initial value. * @param upper Upper endpoint. * @throws NumberIsTooLargeException if {@code lower >= initial} or * {@code initial >= upper}. */ public static void verifySequence(final double lower, final double initial, final double upper) { verifyInterval(lower, initial); verifyInterval(initial, upper); } /** * Check that the endpoints specify an interval and the end points * bracket a root. * * @param function Function. * @param lower Lower endpoint. * @param upper Upper endpoint. * @throws NoBracketingException if function has the same sign at the * endpoints. */ public static void verifyBracketing(UnivariateFunction function, final double lower, final double upper) { if (function == null) { throw new NullArgumentException(LocalizedFormats.FUNCTION); } verifyInterval(lower, upper); if (!isBracketing(function, lower, upper)) { throw new NoBracketingException(lower, upper, function.value(lower), function.value(upper)); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy