All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.distribution.ExponentialDistribution Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 3.6.1
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.distribution;

import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.OutOfRangeException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.util.FastMath;

/**
 * Implementation of the exponential distribution.
 *
 * @see Exponential distribution (Wikipedia)
 * @see Exponential distribution (MathWorld)
 * @version $Id: ExponentialDistribution.java 1244107 2012-02-14 16:17:55Z erans $
 */
public class ExponentialDistribution extends AbstractRealDistribution {
    /**
     * Default inverse cumulative probability accuracy.
     * @since 2.1
     */
    public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
    /** Serializable version identifier */
    private static final long serialVersionUID = 2401296428283614780L;
    /** The mean of this distribution. */
    private final double mean;
    /** Inverse cumulative probability accuracy. */
    private final double solverAbsoluteAccuracy;

    /**
     * Create a exponential distribution with the given mean.
     * @param mean mean of this distribution.
     */
    public ExponentialDistribution(double mean) {
        this(mean, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
    }

    /**
     * Create a exponential distribution with the given mean.
     *
     * @param mean Mean of this distribution.
     * @param inverseCumAccuracy Maximum absolute error in inverse
     * cumulative probability estimates (defaults to
     * {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}).
     * @throws NotStrictlyPositiveException if {@code mean <= 0}.
     * @since 2.1
     */
    public ExponentialDistribution(double mean, double inverseCumAccuracy)
        throws NotStrictlyPositiveException {
        if (mean <= 0) {
            throw new NotStrictlyPositiveException(LocalizedFormats.MEAN, mean);
        }
        this.mean = mean;
        solverAbsoluteAccuracy = inverseCumAccuracy;
    }

    /**
     * Access the mean.
     *
     * @return the mean.
     */
    public double getMean() {
        return mean;
    }

    /**
     * {@inheritDoc}
     *
     * For this distribution {@code P(X = x)} always evaluates to 0.
     *
     * @return 0
     */
    public double probability(double x) {
        return 0.0;
    }

    /** {@inheritDoc} */
    public double density(double x) {
        if (x < 0) {
            return 0;
        }
        return FastMath.exp(-x / mean) / mean;
    }

    /**
     * {@inheritDoc}
     *
     * The implementation of this method is based on:
     * 
     */
    public double cumulativeProbability(double x)  {
        double ret;
        if (x <= 0.0) {
            ret = 0.0;
        } else {
            ret = 1.0 - FastMath.exp(-x / mean);
        }
        return ret;
    }

    /**
     * {@inheritDoc}
     *
     * Returns {@code 0} when {@code p= = 0} and
     * {@code Double.POSITIVE_INFINITY} when {@code p == 1}.
     */
    @Override
    public double inverseCumulativeProbability(double p) throws OutOfRangeException {
        double ret;

        if (p < 0.0 || p > 1.0) {
            throw new OutOfRangeException(p, 0.0, 1.0);
        } else if (p == 1.0) {
            ret = Double.POSITIVE_INFINITY;
        } else {
            ret = -mean * FastMath.log(1.0 - p);
        }

        return ret;
    }

    /**
     * {@inheritDoc}
     *
     * 

Algorithm Description: this implementation uses the * * Inversion Method to generate exponentially distributed random values * from uniform deviates.

* * @return a random value. * @since 2.2 */ @Override public double sample() { return randomData.nextExponential(mean); } /** {@inheritDoc} */ @Override protected double getSolverAbsoluteAccuracy() { return solverAbsoluteAccuracy; } /** * {@inheritDoc} * * For mean parameter {@code k}, the mean is {@code k}. */ public double getNumericalMean() { return getMean(); } /** * {@inheritDoc} * * For mean parameter {@code k}, the variance is {@code k^2}. */ public double getNumericalVariance() { final double m = getMean(); return m * m; } /** * {@inheritDoc} * * The lower bound of the support is always 0 no matter the mean parameter. * * @return lower bound of the support (always 0) */ public double getSupportLowerBound() { return 0; } /** * {@inheritDoc} * * The upper bound of the support is always positive infinity * no matter the mean parameter. * * @return upper bound of the support (always Double.POSITIVE_INFINITY) */ public double getSupportUpperBound() { return Double.POSITIVE_INFINITY; } /** {@inheritDoc} */ public boolean isSupportLowerBoundInclusive() { return true; } /** {@inheritDoc} */ public boolean isSupportUpperBoundInclusive() { return false; } /** * {@inheritDoc} * * The support of this distribution is connected. * * @return {@code true} */ public boolean isSupportConnected() { return true; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy