![JAR search and dependency download from the Maven repository](/logo.png)
org.apache.commons.math3.distribution.GammaDistribution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of commons-math3 Show documentation
Show all versions of commons-math3 Show documentation
The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.distribution;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.special.Gamma;
import org.apache.commons.math3.util.FastMath;
/**
* Implementation of the Gamma distribution.
*
* @see Gamma distribution (Wikipedia)
* @see Gamma distribution (MathWorld)
* @version $Id: GammaDistribution.java 1244107 2012-02-14 16:17:55Z erans $
*/
public class GammaDistribution extends AbstractRealDistribution {
/**
* Default inverse cumulative probability accuracy.
* @since 2.1
*/
public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
/** Serializable version identifier. */
private static final long serialVersionUID = -3239549463135430361L;
/** The shape parameter. */
private final double alpha;
/** The scale parameter. */
private final double beta;
/** Inverse cumulative probability accuracy. */
private final double solverAbsoluteAccuracy;
/**
* Create a new gamma distribution with the given {@code alpha} and
* {@code beta} values.
* @param alpha the shape parameter.
* @param beta the scale parameter.
*/
public GammaDistribution(double alpha, double beta) {
this(alpha, beta, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
}
/**
* Create a new gamma distribution with the given {@code alpha} and
* {@code beta} values.
*
* @param alpha Shape parameter.
* @param beta Scale parameter.
* @param inverseCumAccuracy Maximum absolute error in inverse
* cumulative probability estimates (defaults to
* {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}).
* @throws NotStrictlyPositiveException if {@code alpha <= 0} or
* {@code beta <= 0}.
* @since 2.1
*/
public GammaDistribution(double alpha, double beta, double inverseCumAccuracy)
throws NotStrictlyPositiveException {
if (alpha <= 0) {
throw new NotStrictlyPositiveException(LocalizedFormats.ALPHA, alpha);
}
if (beta <= 0) {
throw new NotStrictlyPositiveException(LocalizedFormats.BETA, beta);
}
this.alpha = alpha;
this.beta = beta;
solverAbsoluteAccuracy = inverseCumAccuracy;
}
/**
* Access the {@code alpha} shape parameter.
*
* @return {@code alpha}.
*/
public double getAlpha() {
return alpha;
}
/**
* Access the {@code beta} scale parameter.
*
* @return {@code beta}.
*/
public double getBeta() {
return beta;
}
/**
* {@inheritDoc}
*
* For this distribution {@code P(X = x)} always evaluates to 0.
*
* @return 0
*/
public double probability(double x) {
return 0.0;
}
/** {@inheritDoc} */
public double density(double x) {
if (x < 0) {
return 0;
}
return FastMath.pow(x / beta, alpha - 1) / beta *
FastMath.exp(-x / beta) / FastMath.exp(Gamma.logGamma(alpha));
}
/**
* {@inheritDoc}
*
* The implementation of this method is based on:
*
* -
*
* Chi-Squared Distribution, equation (9).
*
* - Casella, G., & Berger, R. (1990). Statistical Inference.
* Belmont, CA: Duxbury Press.
*
*
*/
public double cumulativeProbability(double x) {
double ret;
if (x <= 0) {
ret = 0;
} else {
ret = Gamma.regularizedGammaP(alpha, x / beta);
}
return ret;
}
/** {@inheritDoc} */
@Override
protected double getSolverAbsoluteAccuracy() {
return solverAbsoluteAccuracy;
}
/**
* {@inheritDoc}
*
* For shape parameter {@code alpha} and scale parameter {@code beta}, the
* mean is {@code alpha * beta}.
*/
public double getNumericalMean() {
return getAlpha() * getBeta();
}
/**
* {@inheritDoc}
*
* For shape parameter {@code alpha} and scale parameter {@code beta}, the
* variance is {@code alpha * beta^2}.
*
* @return {@inheritDoc}
*/
public double getNumericalVariance() {
final double b = getBeta();
return getAlpha() * b * b;
}
/**
* {@inheritDoc}
*
* The lower bound of the support is always 0 no matter the parameters.
*
* @return lower bound of the support (always 0)
*/
public double getSupportLowerBound() {
return 0;
}
/**
* {@inheritDoc}
*
* The upper bound of the support is always positive infinity
* no matter the parameters.
*
* @return upper bound of the support (always Double.POSITIVE_INFINITY)
*/
public double getSupportUpperBound() {
return Double.POSITIVE_INFINITY;
}
/** {@inheritDoc} */
public boolean isSupportLowerBoundInclusive() {
return true;
}
/** {@inheritDoc} */
public boolean isSupportUpperBoundInclusive() {
return false;
}
/**
* {@inheritDoc}
*
* The support of this distribution is connected.
*
* @return {@code true}
*/
public boolean isSupportConnected() {
return true;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy