org.apache.commons.math3.optimization.direct.BaseAbstractMultivariateOptimizer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of commons-math3 Show documentation
Show all versions of commons-math3 Show documentation
The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.optimization.direct;
import org.apache.commons.math3.util.Incrementor;
import org.apache.commons.math3.exception.MaxCountExceededException;
import org.apache.commons.math3.exception.TooManyEvaluationsException;
import org.apache.commons.math3.exception.NullArgumentException;
import org.apache.commons.math3.analysis.MultivariateFunction;
import org.apache.commons.math3.optimization.BaseMultivariateOptimizer;
import org.apache.commons.math3.optimization.GoalType;
import org.apache.commons.math3.optimization.ConvergenceChecker;
import org.apache.commons.math3.optimization.PointValuePair;
import org.apache.commons.math3.optimization.SimpleValueChecker;
/**
* Base class for implementing optimizers for multivariate scalar functions.
* This base class handles the boiler-plate methods associated to thresholds
* settings, iterations and evaluations counting.
*
* @param Type of the objective function to be optimized.
*
* @version $Id$
* @since 2.2
*/
public abstract class BaseAbstractMultivariateOptimizer
implements BaseMultivariateOptimizer {
/** Evaluations counter. */
protected final Incrementor evaluations = new Incrementor();
/** Convergence checker. */
private ConvergenceChecker checker;
/** Type of optimization. */
private GoalType goal;
/** Initial guess. */
private double[] start;
/** Objective function. */
private MultivariateFunction function;
/**
* Simple constructor with default settings.
* The convergence check is set to a {@link SimpleValueChecker} and
* the allowed number of evaluations is set to {@link Integer#MAX_VALUE}.
*/
protected BaseAbstractMultivariateOptimizer() {
this(new SimpleValueChecker());
}
/**
* @param checker Convergence checker.
*/
protected BaseAbstractMultivariateOptimizer(ConvergenceChecker checker) {
this.checker = checker;
}
/** {@inheritDoc} */
public int getMaxEvaluations() {
return evaluations.getMaximalCount();
}
/** {@inheritDoc} */
public int getEvaluations() {
return evaluations.getCount();
}
/** {@inheritDoc} */
public ConvergenceChecker getConvergenceChecker() {
return checker;
}
/**
* Compute the objective function value.
*
* @param point Point at which the objective function must be evaluated.
* @return the objective function value at the specified point.
* @throws TooManyEvaluationsException if the maximal number of
* evaluations is exceeded.
*/
protected double computeObjectiveValue(double[] point) {
try {
evaluations.incrementCount();
} catch (MaxCountExceededException e) {
throw new TooManyEvaluationsException(e.getMax());
}
return function.value(point);
}
/** {@inheritDoc} */
public PointValuePair optimize(int maxEval, FUNC f, GoalType goalType,
double[] startPoint) {
// Checks.
if (f == null) {
throw new NullArgumentException();
}
if (goalType == null) {
throw new NullArgumentException();
}
if (startPoint == null) {
throw new NullArgumentException();
}
// Reset.
evaluations.setMaximalCount(maxEval);
evaluations.resetCount();
// Store optimization problem characteristics.
function = f;
goal = goalType;
start = startPoint.clone();
// Perform computation.
return doOptimize();
}
/**
* @return the optimization type.
*/
public GoalType getGoalType() {
return goal;
}
/**
* @return the initial guess.
*/
public double[] getStartPoint() {
return start.clone();
}
/**
* Perform the bulk of the optimization algorithm.
*
* @return the point/value pair giving the optimal value for the
* objective function.
*/
protected abstract PointValuePair doOptimize();
}