All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.optimization.general.AbstractLeastSquaresOptimizer Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 3.6.1
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.optimization.general;

import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.analysis.DifferentiableMultivariateVectorFunction;
import org.apache.commons.math3.analysis.MultivariateMatrixFunction;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.linear.QRDecomposition;
import org.apache.commons.math3.linear.DecompositionSolver;
import org.apache.commons.math3.linear.MatrixUtils;
import org.apache.commons.math3.optimization.ConvergenceChecker;
import org.apache.commons.math3.optimization.DifferentiableMultivariateVectorOptimizer;
import org.apache.commons.math3.optimization.PointVectorValuePair;
import org.apache.commons.math3.optimization.direct.BaseAbstractMultivariateVectorOptimizer;
import org.apache.commons.math3.util.FastMath;

/**
 * Base class for implementing least squares optimizers.
 * It handles the boilerplate methods associated to thresholds settings,
 * jacobian and error estimation.
 * 
* This class uses the {@link DifferentiableMultivariateVectorFunction#jacobian()} * of the function argument in method * {@link #optimize(int,DifferentiableMultivariateVectorFunction,double[],double[],double[]) * optimize} and assumes that, in the matrix returned by the * {@link MultivariateMatrixFunction#value(double[]) value} method, the rows * iterate on the model functions while the columns iterate on the parameters; thus, * the numbers of rows is equal to the length of the {@code target} array while the * number of columns is equal to the length of the {@code startPoint} array. * * @version $Id: AbstractLeastSquaresOptimizer.java 1295552 2012-03-01 13:14:32Z erans $ * @since 1.2 */ public abstract class AbstractLeastSquaresOptimizer extends BaseAbstractMultivariateVectorOptimizer implements DifferentiableMultivariateVectorOptimizer { /** Singularity threshold (cf. {@link #getCovariances(double)}). */ private static final double DEFAULT_SINGULARITY_THRESHOLD = 1e-14; /** * Jacobian matrix of the weighted residuals. * This matrix is in canonical form just after the calls to * {@link #updateJacobian()}, but may be modified by the solver * in the derived class (the {@link LevenbergMarquardtOptimizer * Levenberg-Marquardt optimizer} does this). */ protected double[][] weightedResidualJacobian; /** Number of columns of the jacobian matrix. */ protected int cols; /** Number of rows of the jacobian matrix. */ protected int rows; /** Current point. */ protected double[] point; /** Current objective function value. */ protected double[] objective; /** Weighted residuals */ protected double[] weightedResiduals; /** Cost value (square root of the sum of the residuals). */ protected double cost; /** Objective function derivatives. */ private MultivariateMatrixFunction jF; /** Number of evaluations of the Jacobian. */ private int jacobianEvaluations; /** * Simple constructor with default settings. * The convergence check is set to a {@link * org.apache.commons.math3.optimization.SimpleVectorValueChecker}. */ protected AbstractLeastSquaresOptimizer() {} /** * @param checker Convergence checker. */ protected AbstractLeastSquaresOptimizer(ConvergenceChecker checker) { super(checker); } /** * @return the number of evaluations of the Jacobian function. */ public int getJacobianEvaluations() { return jacobianEvaluations; } /** * Update the jacobian matrix. * * @throws DimensionMismatchException if the Jacobian dimension does not * match problem dimension. */ protected void updateJacobian() { ++jacobianEvaluations; weightedResidualJacobian = jF.value(point); if (weightedResidualJacobian.length != rows) { throw new DimensionMismatchException(weightedResidualJacobian.length, rows); } final double[] residualsWeights = getWeightRef(); for (int i = 0; i < rows; i++) { final double[] ji = weightedResidualJacobian[i]; double wi = FastMath.sqrt(residualsWeights[i]); for (int j = 0; j < cols; ++j) { //ji[j] *= -1.0; weightedResidualJacobian[i][j] = -ji[j]*wi; } } } /** * Update the residuals array and cost function value. * @throws DimensionMismatchException if the dimension does not match the * problem dimension. * @throws org.apache.commons.math3.exception.TooManyEvaluationsException * if the maximal number of evaluations is exceeded. */ protected void updateResidualsAndCost() { objective = computeObjectiveValue(point); if (objective.length != rows) { throw new DimensionMismatchException(objective.length, rows); } final double[] targetValues = getTargetRef(); final double[] residualsWeights = getWeightRef(); cost = 0; for (int i = 0; i < rows; i++) { final double residual = targetValues[i] - objective[i]; weightedResiduals[i]= residual*FastMath.sqrt(residualsWeights[i]); cost += residualsWeights[i] * residual * residual; } cost = FastMath.sqrt(cost); } /** * Get the Root Mean Square value. * Get the Root Mean Square value, i.e. the root of the arithmetic * mean of the square of all weighted residuals. This is related to the * criterion that is minimized by the optimizer as follows: if * c if the criterion, and n is the number of * measurements, then the RMS is sqrt (c/n). * * @return RMS value */ public double getRMS() { return FastMath.sqrt(getChiSquare() / rows); } /** * Get a Chi-Square-like value assuming the N residuals follow N * distinct normal distributions centered on 0 and whose variances are * the reciprocal of the weights. * @return chi-square value */ public double getChiSquare() { return cost * cost; } /** * Get the covariance matrix of the optimized parameters. * * @return the covariance matrix. * @throws org.apache.commons.math3.linear.SingularMatrixException * if the covariance matrix cannot be computed (singular problem). * * @see #getCovariances(double) */ public double[][] getCovariances() { return getCovariances(DEFAULT_SINGULARITY_THRESHOLD); } /** * Get the covariance matrix of the optimized parameters. *
* Note that this operation involves the inversion of the * JTJ matrix, where {@code J} is the * Jacobian matrix. * The {@code threshold} parameter is a way for the caller to specify * that the result of this computation should be considered meaningless, * and thus trigger an exception. * * @param threshold Singularity threshold. * @return the covariance matrix. * @throws org.apache.commons.math3.linear.SingularMatrixException * if the covariance matrix cannot be computed (singular problem). */ public double[][] getCovariances(double threshold) { // Set up the jacobian. updateJacobian(); // Compute transpose(J)J, without building intermediate matrices. double[][] jTj = new double[cols][cols]; for (int i = 0; i < cols; ++i) { for (int j = i; j < cols; ++j) { double sum = 0; for (int k = 0; k < rows; ++k) { sum += weightedResidualJacobian[k][i] * weightedResidualJacobian[k][j]; } jTj[i][j] = sum; jTj[j][i] = sum; } } // Compute the covariances matrix. final DecompositionSolver solver = new QRDecomposition(MatrixUtils.createRealMatrix(jTj), threshold).getSolver(); return solver.getInverse().getData(); } /** * Guess the errors in optimized parameters. * Guessing is covariance-based: It only gives a rough order of magnitude. * * @return errors in optimized parameters * @throws org.apache.commons.math3.linear.SingularMatrixException * if the covariances matrix cannot be computed. * @throws NumberIsTooSmallException if the number of degrees of freedom is not * positive, i.e. the number of measurements is less or equal to the number of * parameters. */ public double[] guessParametersErrors() { if (rows <= cols) { throw new NumberIsTooSmallException(LocalizedFormats.NO_DEGREES_OF_FREEDOM, rows, cols, false); } double[] errors = new double[cols]; final double c = FastMath.sqrt(getChiSquare() / (rows - cols)); double[][] covar = getCovariances(); for (int i = 0; i < errors.length; ++i) { errors[i] = FastMath.sqrt(covar[i][i]) * c; } return errors; } /** {@inheritDoc} */ @Override public PointVectorValuePair optimize(int maxEval, final DifferentiableMultivariateVectorFunction f, final double[] target, final double[] weights, final double[] startPoint) { // Reset counter. jacobianEvaluations = 0; // Store least squares problem characteristics. jF = f.jacobian(); // Arrays shared with the other private methods. point = startPoint.clone(); rows = target.length; cols = point.length; weightedResidualJacobian = new double[rows][cols]; this.weightedResiduals = new double[rows]; cost = Double.POSITIVE_INFINITY; return super.optimize(maxEval, f, target, weights, startPoint); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy