All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.random.RandomDataImpl Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 3.6.1
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.random;

import java.io.Serializable;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.security.NoSuchProviderException;
import java.security.SecureRandom;
import java.util.Collection;

import org.apache.commons.math3.distribution.BetaDistribution;
import org.apache.commons.math3.distribution.BinomialDistribution;
import org.apache.commons.math3.distribution.CauchyDistribution;
import org.apache.commons.math3.distribution.ChiSquaredDistribution;
import org.apache.commons.math3.distribution.RealDistribution;
import org.apache.commons.math3.distribution.FDistribution;
import org.apache.commons.math3.distribution.HypergeometricDistribution;
import org.apache.commons.math3.distribution.IntegerDistribution;
import org.apache.commons.math3.distribution.PascalDistribution;
import org.apache.commons.math3.distribution.TDistribution;
import org.apache.commons.math3.distribution.WeibullDistribution;
import org.apache.commons.math3.distribution.ZipfDistribution;
import org.apache.commons.math3.exception.MathIllegalArgumentException;
import org.apache.commons.math3.exception.MathInternalError;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.util.ArithmeticUtils;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.ResizableDoubleArray;

/**
 * Implements the {@link RandomData} interface using a {@link RandomGenerator}
 * instance to generate non-secure data and a {@link java.security.SecureRandom}
 * instance to provide data for the nextSecureXxx methods. If no
 * RandomGenerator is provided in the constructor, the default is
 * to use a {@link Well19937c} generator. To plug in a different
 * implementation, either implement RandomGenerator directly or
 * extend {@link AbstractRandomGenerator}.
 * 

* Supports reseeding the underlying pseudo-random number generator (PRNG). The * SecurityProvider and Algorithm used by the * SecureRandom instance can also be reset. *

*

* For details on the default PRNGs, see {@link java.util.Random} and * {@link java.security.SecureRandom}. *

*

* Usage Notes: *

    *
  • * Instance variables are used to maintain RandomGenerator and * SecureRandom instances used in data generation. Therefore, to * generate a random sequence of values or strings, you should use just * one RandomDataImpl instance repeatedly.
  • *
  • * The "secure" methods are *much* slower. These should be used only when a * cryptographically secure random sequence is required. A secure random * sequence is a sequence of pseudo-random values which, in addition to being * well-dispersed (so no subsequence of values is an any more likely than other * subsequence of the the same length), also has the additional property that * knowledge of values generated up to any point in the sequence does not make * it any easier to predict subsequent values.
  • *
  • * When a new RandomDataImpl is created, the underlying random * number generators are not initialized. If you do not * explicitly seed the default non-secure generator, it is seeded with the * current time in milliseconds plus the system identity hash code on first use. * The same holds for the secure generator. If you provide a RandomGenerator * to the constructor, however, this generator is not reseeded by the constructor * nor is it reseeded on first use.
  • *
  • * The reSeed and reSeedSecure methods delegate to the * corresponding methods on the underlying RandomGenerator and * SecureRandom instances. Therefore, reSeed(long) * fully resets the initial state of the non-secure random number generator (so * that reseeding with a specific value always results in the same subsequent * random sequence); whereas reSeedSecure(long) does not * reinitialize the secure random number generator (so secure sequences started * with calls to reseedSecure(long) won't be identical).
  • *
  • * This implementation is not synchronized. *
*

* * @version $Id: RandomDataImpl.java 1296517 2012-03-02 23:55:08Z sebb $ */ public class RandomDataImpl implements RandomData, Serializable { /** Serializable version identifier */ private static final long serialVersionUID = -626730818244969716L; /** * Used when generating Exponential samples. * Table containing the constants * q_i = sum_{j=1}^i (ln 2)^j/j! = ln 2 + (ln 2)^2/2 + ... + (ln 2)^i/i! * until the largest representable fraction below 1 is exceeded. * * Note that * 1 = 2 - 1 = exp(ln 2) - 1 = sum_{n=1}^infty (ln 2)^n / n! * thus q_i -> 1 as i -> infty, * so the higher i, the closer to one we get (the series is not alternating). * * By trying, n = 16 in Java is enough to reach 1.0. */ private static final double[] EXPONENTIAL_SA_QI; /** underlying random number generator */ private RandomGenerator rand = null; /** underlying secure random number generator */ private SecureRandom secRand = null; /** * Initialize tables */ static { /** * Filling EXPONENTIAL_SA_QI table. * Note that we don't want qi = 0 in the table. */ final double LN2 = FastMath.log(2); double qi = 0; int i = 1; /** * MathUtils provides factorials up to 20, so let's use that limit together * with Precision.EPSILON to generate the following code (a priori, we know that * there will be 16 elements, but instead of hardcoding that, this is * prettier): */ final ResizableDoubleArray ra = new ResizableDoubleArray(20); while (qi < 1) { qi += FastMath.pow(LN2, i) / ArithmeticUtils.factorial(i); ra.addElement(qi); ++i; } EXPONENTIAL_SA_QI = ra.getElements(); } /** * Construct a RandomDataImpl, using a default random generator as the source * of randomness. * *

The default generator is a {@link Well19937c} seeded * with {@code System.currentTimeMillis() + System.identityHashCode(this))}. * The generator is initialized and seeded on first use.

*/ public RandomDataImpl() { } /** * Construct a RandomDataImpl using the supplied {@link RandomGenerator} as * the source of (non-secure) random data. * * @param rand the source of (non-secure) random data * (may be null, resulting in the default generator) * @since 1.1 */ public RandomDataImpl(RandomGenerator rand) { super(); this.rand = rand; } /** * {@inheritDoc} *

* Algorithm Description: hex strings are generated using a * 2-step process. *

    *
  1. {@code len / 2 + 1} binary bytes are generated using the underlying * Random
  2. *
  3. Each binary byte is translated into 2 hex digits
  4. *
*

* * @param len the desired string length. * @return the random string. * @throws NotStrictlyPositiveException if {@code len <= 0}. */ public String nextHexString(int len) { if (len <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.LENGTH, len); } // Get a random number generator RandomGenerator ran = getRan(); // Initialize output buffer StringBuilder outBuffer = new StringBuilder(); // Get int(len/2)+1 random bytes byte[] randomBytes = new byte[(len / 2) + 1]; ran.nextBytes(randomBytes); // Convert each byte to 2 hex digits for (int i = 0; i < randomBytes.length; i++) { Integer c = Integer.valueOf(randomBytes[i]); /* * Add 128 to byte value to make interval 0-255 before doing hex * conversion. This guarantees <= 2 hex digits from toHexString() * toHexString would otherwise add 2^32 to negative arguments. */ String hex = Integer.toHexString(c.intValue() + 128); // Make sure we add 2 hex digits for each byte if (hex.length() == 1) { hex = "0" + hex; } outBuffer.append(hex); } return outBuffer.toString().substring(0, len); } /** {@inheritDoc} */ public int nextInt(int lower, int upper) { if (lower >= upper) { throw new NumberIsTooLargeException(LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND, lower, upper, false); } double r = getRan().nextDouble(); double scaled = r * upper + (1.0 - r) * lower + r; return (int) FastMath.floor(scaled); } /** {@inheritDoc} */ public long nextLong(long lower, long upper) { if (lower >= upper) { throw new NumberIsTooLargeException(LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND, lower, upper, false); } double r = getRan().nextDouble(); double scaled = r * upper + (1.0 - r) * lower + r; return (long)FastMath.floor(scaled); } /** * {@inheritDoc} *

* Algorithm Description: hex strings are generated in * 40-byte segments using a 3-step process. *

    *
  1. * 20 random bytes are generated using the underlying * SecureRandom.
  2. *
  3. * SHA-1 hash is applied to yield a 20-byte binary digest.
  4. *
  5. * Each byte of the binary digest is converted to 2 hex digits.
  6. *
*

*/ public String nextSecureHexString(int len) { if (len <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.LENGTH, len); } // Get SecureRandom and setup Digest provider SecureRandom secRan = getSecRan(); MessageDigest alg = null; try { alg = MessageDigest.getInstance("SHA-1"); } catch (NoSuchAlgorithmException ex) { // this should never happen throw new MathInternalError(ex); } alg.reset(); // Compute number of iterations required (40 bytes each) int numIter = (len / 40) + 1; StringBuilder outBuffer = new StringBuilder(); for (int iter = 1; iter < numIter + 1; iter++) { byte[] randomBytes = new byte[40]; secRan.nextBytes(randomBytes); alg.update(randomBytes); // Compute hash -- will create 20-byte binary hash byte[] hash = alg.digest(); // Loop over the hash, converting each byte to 2 hex digits for (int i = 0; i < hash.length; i++) { Integer c = Integer.valueOf(hash[i]); /* * Add 128 to byte value to make interval 0-255 This guarantees * <= 2 hex digits from toHexString() toHexString would * otherwise add 2^32 to negative arguments */ String hex = Integer.toHexString(c.intValue() + 128); // Keep strings uniform length -- guarantees 40 bytes if (hex.length() == 1) { hex = "0" + hex; } outBuffer.append(hex); } } return outBuffer.toString().substring(0, len); } /** {@inheritDoc} */ public int nextSecureInt(int lower, int upper) { if (lower >= upper) { throw new NumberIsTooLargeException(LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND, lower, upper, false); } SecureRandom sec = getSecRan(); double r = sec.nextDouble(); double scaled = r * upper + (1.0 - r) * lower + r; return (int)FastMath.floor(scaled); } /** {@inheritDoc} */ public long nextSecureLong(long lower, long upper) { if (lower >= upper) { throw new NumberIsTooLargeException(LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND, lower, upper, false); } SecureRandom sec = getSecRan(); double r = sec.nextDouble(); double scaled = r * upper + (1.0 - r) * lower + r; return (long)FastMath.floor(scaled); } /** * {@inheritDoc} *

* Algorithm Description: *

  • For small means, uses simulation of a Poisson process * using Uniform deviates, as described * here. * The Poisson process (and hence value returned) is bounded by 1000 * mean.
  • * *
  • For large means, uses the rejection algorithm described in
    * Devroye, Luc. (1981).The Computer Generation of Poisson Random Variables * Computing vol. 26 pp. 197-207.

*/ public long nextPoisson(double mean) { if (mean <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.MEAN, mean); } final double pivot = 40.0d; if (mean < pivot) { final RandomGenerator generator = getRan(); double p = FastMath.exp(-mean); long n = 0; double r = 1.0d; double rnd = 1.0d; while (n < 1000 * mean) { rnd = generator.nextDouble(); r = r * rnd; if (r >= p) { n++; } else { return n; } } return n; } else { final double lambda = FastMath.floor(mean); final double lambdaFractional = mean - lambda; final double logLambda = FastMath.log(lambda); final double logLambdaFactorial = ArithmeticUtils.factorialLog((int) lambda); final long y2 = lambdaFractional < Double.MIN_VALUE ? 0 : nextPoisson(lambdaFractional); final double delta = FastMath.sqrt(lambda * FastMath.log(32 * lambda / FastMath.PI + 1)); final double halfDelta = delta / 2; final double twolpd = 2 * lambda + delta; final double a1 = FastMath.sqrt(FastMath.PI * twolpd) * FastMath.exp(1 / 8 * lambda); final double a2 = (twolpd / delta) * FastMath.exp(-delta * (1 + delta) / twolpd); final double aSum = a1 + a2 + 1; final double p1 = a1 / aSum; final double p2 = a2 / aSum; final double c1 = 1 / (8 * lambda); double x = 0; double y = 0; double v = 0; int a = 0; double t = 0; double qr = 0; double qa = 0; for (;;) { final double u = nextUniform(0.0, 1); if (u <= p1) { final double n = nextGaussian(0d, 1d); x = n * FastMath.sqrt(lambda + halfDelta) - 0.5d; if (x > delta || x < -lambda) { continue; } y = x < 0 ? FastMath.floor(x) : FastMath.ceil(x); final double e = nextExponential(1d); v = -e - (n * n / 2) + c1; } else { if (u > p1 + p2) { y = lambda; break; } else { x = delta + (twolpd / delta) * nextExponential(1d); y = FastMath.ceil(x); v = -nextExponential(1d) - delta * (x + 1) / twolpd; } } a = x < 0 ? 1 : 0; t = y * (y + 1) / (2 * lambda); if (v < -t && a == 0) { y = lambda + y; break; } qr = t * ((2 * y + 1) / (6 * lambda) - 1); qa = qr - (t * t) / (3 * (lambda + a * (y + 1))); if (v < qa) { y = lambda + y; break; } if (v > qr) { continue; } if (v < y * logLambda - ArithmeticUtils.factorialLog((int) (y + lambda)) + logLambdaFactorial) { y = lambda + y; break; } } return y2 + (long) y; } } /** {@inheritDoc} */ public double nextGaussian(double mu, double sigma) { if (sigma <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.STANDARD_DEVIATION, sigma); } return sigma * getRan().nextGaussian() + mu; } /** * {@inheritDoc} * *

* Algorithm Description: Uses the Algorithm SA (Ahrens) * from p. 876 in: * [1]: Ahrens, J. H. and Dieter, U. (1972). Computer methods for * sampling from the exponential and normal distributions. * Communications of the ACM, 15, 873-882. *

*/ public double nextExponential(double mean) { if (mean <= 0.0) { throw new NotStrictlyPositiveException(LocalizedFormats.MEAN, mean); } // Step 1: double a = 0; double u = this.nextUniform(0, 1); // Step 2 and 3: while (u < 0.5) { a += EXPONENTIAL_SA_QI[0]; u *= 2; } // Step 4 (now u >= 0.5): u += u - 1; // Step 5: if (u <= EXPONENTIAL_SA_QI[0]) { return mean * (a + u); } // Step 6: int i = 0; // Should be 1, be we iterate before it in while using 0 double u2 = this.nextUniform(0, 1); double umin = u2; // Step 7 and 8: do { ++i; u2 = this.nextUniform(0, 1); if (u2 < umin) { umin = u2; } // Step 8: } while (u > EXPONENTIAL_SA_QI[i]); // Ensured to exit since EXPONENTIAL_SA_QI[MAX] = 1 return mean * (a + umin * EXPONENTIAL_SA_QI[0]); } /** * {@inheritDoc} * *

* Algorithm Description: scales the output of * Random.nextDouble(), but rejects 0 values (i.e., will generate another * random double if Random.nextDouble() returns 0). This is necessary to * provide a symmetric output interval (both endpoints excluded). *

* * @throws MathIllegalArgumentException if one of the bounds is infinite or * {@code NaN} or either bound is infinite or NaN */ public double nextUniform(double lower, double upper) { return nextUniform(lower, upper, false); } /** * {@inheritDoc} * *

* Algorithm Description: if the lower bound is excluded, * scales the output of Random.nextDouble(), but rejects 0 values (i.e., * will generate another random double if Random.nextDouble() returns 0). * This is necessary to provide a symmetric output interval (both * endpoints excluded). *

* * @throws MathIllegalArgumentException if one of the bounds is infinite or * {@code NaN} * @since 3.0 */ public double nextUniform(double lower, double upper, boolean lowerInclusive) { if (lower >= upper) { throw new NumberIsTooLargeException(LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND, lower, upper, false); } if (Double.isInfinite(lower) || Double.isInfinite(upper)) { throw new MathIllegalArgumentException(LocalizedFormats.INFINITE_BOUND); } if (Double.isNaN(lower) || Double.isNaN(upper)) { throw new MathIllegalArgumentException(LocalizedFormats.NAN_NOT_ALLOWED); } final RandomGenerator generator = getRan(); // ensure nextDouble() isn't 0.0 double u = generator.nextDouble(); while (!lowerInclusive && u <= 0.0) { u = generator.nextDouble(); } return u * upper + (1.0 - u) * lower; } /** * Generates a random value from the {@link BetaDistribution Beta Distribution}. * This implementation uses {@link #nextInversionDeviate(RealDistribution) inversion} * to generate random values. * * @param alpha first distribution shape parameter * @param beta second distribution shape parameter * @return random value sampled from the beta(alpha, beta) distribution * @since 2.2 */ public double nextBeta(double alpha, double beta) { return nextInversionDeviate(new BetaDistribution(alpha, beta)); } /** * Generates a random value from the {@link BinomialDistribution Binomial Distribution}. * This implementation uses {@link #nextInversionDeviate(RealDistribution) inversion} * to generate random values. * * @param numberOfTrials number of trials of the Binomial distribution * @param probabilityOfSuccess probability of success of the Binomial distribution * @return random value sampled from the Binomial(numberOfTrials, probabilityOfSuccess) distribution * @since 2.2 */ public int nextBinomial(int numberOfTrials, double probabilityOfSuccess) { return nextInversionDeviate(new BinomialDistribution(numberOfTrials, probabilityOfSuccess)); } /** * Generates a random value from the {@link CauchyDistribution Cauchy Distribution}. * This implementation uses {@link #nextInversionDeviate(RealDistribution) inversion} * to generate random values. * * @param median the median of the Cauchy distribution * @param scale the scale parameter of the Cauchy distribution * @return random value sampled from the Cauchy(median, scale) distribution * @since 2.2 */ public double nextCauchy(double median, double scale) { return nextInversionDeviate(new CauchyDistribution(median, scale)); } /** * Generates a random value from the {@link ChiSquaredDistribution ChiSquare Distribution}. * This implementation uses {@link #nextInversionDeviate(RealDistribution) inversion} * to generate random values. * * @param df the degrees of freedom of the ChiSquare distribution * @return random value sampled from the ChiSquare(df) distribution * @since 2.2 */ public double nextChiSquare(double df) { return nextInversionDeviate(new ChiSquaredDistribution(df)); } /** * Generates a random value from the {@link FDistribution F Distribution}. * This implementation uses {@link #nextInversionDeviate(RealDistribution) inversion} * to generate random values. * * @param numeratorDf the numerator degrees of freedom of the F distribution * @param denominatorDf the denominator degrees of freedom of the F distribution * @return random value sampled from the F(numeratorDf, denominatorDf) distribution * @since 2.2 */ public double nextF(double numeratorDf, double denominatorDf) { return nextInversionDeviate(new FDistribution(numeratorDf, denominatorDf)); } /** *

Generates a random value from the * {@link org.apache.commons.math3.distribution.GammaDistribution Gamma Distribution}.

* *

This implementation uses the following algorithms:

* *

For 0 < shape < 1:
* Ahrens, J. H. and Dieter, U., Computer methods for * sampling from gamma, beta, Poisson and binomial distributions. * Computing, 12, 223-246, 1974.

* *

For shape >= 1:
* Marsaglia and Tsang, A Simple Method for Generating * Gamma Variables. ACM Transactions on Mathematical Software, * Volume 26 Issue 3, September, 2000.

* * @param shape the median of the Gamma distribution * @param scale the scale parameter of the Gamma distribution * @return random value sampled from the Gamma(shape, scale) distribution * @since 2.2 */ public double nextGamma(double shape, double scale) { if (shape < 1) { // [1]: p. 228, Algorithm GS while (true) { // Step 1: final double u = this.nextUniform(0, 1); final double bGS = 1 + shape/FastMath.E; final double p = bGS*u; if (p <= 1) { // Step 2: final double x = FastMath.pow(p, 1/shape); final double u2 = this.nextUniform(0.0, 1); if (u2 > FastMath.exp(-x)) { // Reject continue; } else { return scale*x; } } else { // Step 3: final double x = -1 * FastMath.log((bGS-p)/shape); final double u2 = this.nextUniform(0, 1); if (u2 > FastMath.pow(x, shape - 1)) { // Reject continue; } else { return scale*x; } } } } // Now shape >= 1 final RandomGenerator generator = this.getRan(); final double d = shape - 0.333333333333333333; final double c = 1.0 / (3*FastMath.sqrt(d)); while (true) { final double x = generator.nextGaussian(); final double v = (1+c*x)*(1+c*x)*(1+c*x); if (v <= 0) { continue; } final double xx = x*x; final double u = this.nextUniform(0, 1); // Squeeze if (u < 1 - 0.0331*xx*xx) { return scale*d*v; } if (FastMath.log(u) < 0.5*xx + d*(1 - v + FastMath.log(v))) { return scale*d*v; } } } /** * Generates a random value from the {@link HypergeometricDistribution Hypergeometric Distribution}. * This implementation uses {@link #nextInversionDeviate(IntegerDistribution) inversion} * to generate random values. * * @param populationSize the population size of the Hypergeometric distribution * @param numberOfSuccesses number of successes in the population of the Hypergeometric distribution * @param sampleSize the sample size of the Hypergeometric distribution * @return random value sampled from the Hypergeometric(numberOfSuccesses, sampleSize) distribution * @since 2.2 */ public int nextHypergeometric(int populationSize, int numberOfSuccesses, int sampleSize) { return nextInversionDeviate(new HypergeometricDistribution(populationSize, numberOfSuccesses, sampleSize)); } /** * Generates a random value from the {@link PascalDistribution Pascal Distribution}. * This implementation uses {@link #nextInversionDeviate(IntegerDistribution) inversion} * to generate random values. * * @param r the number of successes of the Pascal distribution * @param p the probability of success of the Pascal distribution * @return random value sampled from the Pascal(r, p) distribution * @since 2.2 */ public int nextPascal(int r, double p) { return nextInversionDeviate(new PascalDistribution(r, p)); } /** * Generates a random value from the {@link TDistribution T Distribution}. * This implementation uses {@link #nextInversionDeviate(RealDistribution) inversion} * to generate random values. * * @param df the degrees of freedom of the T distribution * @return random value from the T(df) distribution * @since 2.2 */ public double nextT(double df) { return nextInversionDeviate(new TDistribution(df)); } /** * Generates a random value from the {@link WeibullDistribution Weibull Distribution}. * This implementation uses {@link #nextInversionDeviate(RealDistribution) inversion} * to generate random values. * * @param shape the shape parameter of the Weibull distribution * @param scale the scale parameter of the Weibull distribution * @return random value sampled from the Weibull(shape, size) distribution * @since 2.2 */ public double nextWeibull(double shape, double scale) { return nextInversionDeviate(new WeibullDistribution(shape, scale)); } /** * Generates a random value from the {@link ZipfDistribution Zipf Distribution}. * This implementation uses {@link #nextInversionDeviate(IntegerDistribution) inversion} * to generate random values. * * @param numberOfElements the number of elements of the ZipfDistribution * @param exponent the exponent of the ZipfDistribution * @return random value sampled from the Zipf(numberOfElements, exponent) distribution * @since 2.2 */ public int nextZipf(int numberOfElements, double exponent) { return nextInversionDeviate(new ZipfDistribution(numberOfElements, exponent)); } /** * Returns the RandomGenerator used to generate non-secure random data. *

* Creates and initializes a default generator if null. Uses a {@link Well19937c} * generator with {@code System.currentTimeMillis() + System.identityHashCode(this))} as the default seed. *

* * @return the Random used to generate random data * @since 1.1 */ private RandomGenerator getRan() { if (rand == null) { initRan(); } return rand; } /** * Sets the default generator to a {@link Well19937c} generator seeded with * {@code System.currentTimeMillis() + System.identityHashCode(this))}. */ private void initRan() { rand = new Well19937c(System.currentTimeMillis() + System.identityHashCode(this)); } /** * Returns the SecureRandom used to generate secure random data. *

* Creates and initializes if null. Uses * {@code System.currentTimeMillis() + System.identityHashCode(this)} as the default seed. *

* * @return the SecureRandom used to generate secure random data */ private SecureRandom getSecRan() { if (secRand == null) { secRand = new SecureRandom(); secRand.setSeed(System.currentTimeMillis() + System.identityHashCode(this)); } return secRand; } /** * Reseeds the random number generator with the supplied seed. *

* Will create and initialize if null. *

* * @param seed * the seed value to use */ public void reSeed(long seed) { if (rand == null) { initRan(); } rand.setSeed(seed); } /** * Reseeds the secure random number generator with the current time in * milliseconds. *

* Will create and initialize if null. *

*/ public void reSeedSecure() { if (secRand == null) { secRand = new SecureRandom(); } secRand.setSeed(System.currentTimeMillis()); } /** * Reseeds the secure random number generator with the supplied seed. *

* Will create and initialize if null. *

* * @param seed * the seed value to use */ public void reSeedSecure(long seed) { if (secRand == null) { secRand = new SecureRandom(); } secRand.setSeed(seed); } /** * Reseeds the random number generator with * {@code System.currentTimeMillis() + System.identityHashCode(this))}. */ public void reSeed() { if (rand == null) { initRan(); } rand.setSeed(System.currentTimeMillis() + System.identityHashCode(this)); } /** * Sets the PRNG algorithm for the underlying SecureRandom instance using * the Security Provider API. The Security Provider API is defined in * Java Cryptography Architecture API Specification & Reference. *

* USAGE NOTE: This method carries significant * overhead and may take several seconds to execute. *

* * @param algorithm * the name of the PRNG algorithm * @param provider * the name of the provider * @throws NoSuchAlgorithmException * if the specified algorithm is not available * @throws NoSuchProviderException * if the specified provider is not installed */ public void setSecureAlgorithm(String algorithm, String provider) throws NoSuchAlgorithmException, NoSuchProviderException { secRand = SecureRandom.getInstance(algorithm, provider); } /** * {@inheritDoc} * *

* Uses a 2-cycle permutation shuffle. The shuffling process is described * here. *

*/ public int[] nextPermutation(int n, int k) { if (k > n) { throw new NumberIsTooLargeException(LocalizedFormats.PERMUTATION_EXCEEDS_N, k, n, true); } if (k <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.PERMUTATION_SIZE, k); } int[] index = getNatural(n); shuffle(index, n - k); int[] result = new int[k]; for (int i = 0; i < k; i++) { result[i] = index[n - i - 1]; } return result; } /** * {@inheritDoc} * *

* Algorithm Description: Uses a 2-cycle permutation * shuffle to generate a random permutation of c.size() and * then returns the elements whose indexes correspond to the elements of the * generated permutation. This technique is described, and proven to * generate random samples * here *

*/ public Object[] nextSample(Collection c, int k) { int len = c.size(); if (k > len) { throw new NumberIsTooLargeException(LocalizedFormats.SAMPLE_SIZE_EXCEEDS_COLLECTION_SIZE, k, len, true); } if (k <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.NUMBER_OF_SAMPLES, k); } Object[] objects = c.toArray(); int[] index = nextPermutation(len, k); Object[] result = new Object[k]; for (int i = 0; i < k; i++) { result[i] = objects[index[i]]; } return result; } /** * Generate a random deviate from the given distribution using the * inversion method. * * @param distribution Continuous distribution to generate a random value from * @return a random value sampled from the given distribution * @since 2.2 */ public double nextInversionDeviate(RealDistribution distribution) { return distribution.inverseCumulativeProbability(nextUniform(0, 1)); } /** * Generate a random deviate from the given distribution using the * inversion method. * * @param distribution Integer distribution to generate a random value from * @return a random value sampled from the given distribution * @since 2.2 */ public int nextInversionDeviate(IntegerDistribution distribution) { return distribution.inverseCumulativeProbability(nextUniform(0, 1)); } // ------------------------Private methods---------------------------------- /** * Uses a 2-cycle permutation shuffle to randomly re-order the last elements * of list. * * @param list * list to be shuffled * @param end * element past which shuffling begins */ private void shuffle(int[] list, int end) { int target = 0; for (int i = list.length - 1; i >= end; i--) { if (i == 0) { target = 0; } else { target = nextInt(0, i); } int temp = list[target]; list[target] = list[i]; list[i] = temp; } } /** * Returns an array representing n. * * @param n * the natural number to represent * @return array with entries = elements of n */ private int[] getNatural(int n) { int[] natural = new int[n]; for (int i = 0; i < n; i++) { natural[i] = i; } return natural; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy