All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.util.ArithmeticUtils Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 3.6.1
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.util;

import java.math.BigInteger;
import org.apache.commons.math3.exception.MathArithmeticException;
import org.apache.commons.math3.exception.NotPositiveException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.util.Localizable;
import org.apache.commons.math3.exception.util.LocalizedFormats;

/**
 * Some useful, arithmetics related, additions to the built-in functions in
 * {@link Math}.
 *
 * @version $Id: ArithmeticUtils.java 1244107 2012-02-14 16:17:55Z erans $
 */
public final class ArithmeticUtils {

    /** All long-representable factorials */
    static final long[] FACTORIALS = new long[] {
                       1l,                  1l,                   2l,
                       6l,                 24l,                 120l,
                     720l,               5040l,               40320l,
                  362880l,            3628800l,            39916800l,
               479001600l,         6227020800l,         87178291200l,
           1307674368000l,     20922789888000l,     355687428096000l,
        6402373705728000l, 121645100408832000l, 2432902008176640000l };

    /** Private constructor. */
    private ArithmeticUtils() {
        super();
    }

    /**
     * Add two integers, checking for overflow.
     *
     * @param x an addend
     * @param y an addend
     * @return the sum {@code x+y}
     * @throws MathArithmeticException if the result can not be represented
     * as an {@code int}.
     * @since 1.1
     */
    public static int addAndCheck(int x, int y) {
        long s = (long)x + (long)y;
        if (s < Integer.MIN_VALUE || s > Integer.MAX_VALUE) {
            throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_ADDITION, x, y);
        }
        return (int)s;
    }

    /**
     * Add two long integers, checking for overflow.
     *
     * @param a an addend
     * @param b an addend
     * @return the sum {@code a+b}
     * @throws MathArithmeticException if the result can not be represented as an
     *         long
     * @since 1.2
     */
    public static long addAndCheck(long a, long b) {
        return ArithmeticUtils.addAndCheck(a, b, LocalizedFormats.OVERFLOW_IN_ADDITION);
    }

    /**
     * Returns an exact representation of the  Binomial
     * Coefficient, "{@code n choose k}", the number of
     * {@code k}-element subsets that can be selected from an
     * {@code n}-element set.
     * 

* Preconditions: *

    *
  • {@code 0 <= k <= n } (otherwise * {@code IllegalArgumentException} is thrown)
  • *
  • The result is small enough to fit into a {@code long}. The * largest value of {@code n} for which all coefficients are * {@code < Long.MAX_VALUE} is 66. If the computed value exceeds * {@code Long.MAX_VALUE} an {@code ArithMeticException} is * thrown.
  • *

* * @param n the size of the set * @param k the size of the subsets to be counted * @return {@code n choose k} * @throws NotPositiveException if {@code n < 0}. * @throws NumberIsTooLargeException if {@code k > n}. * @throws MathArithmeticException if the result is too large to be * represented by a long integer. */ public static long binomialCoefficient(final int n, final int k) { ArithmeticUtils.checkBinomial(n, k); if ((n == k) || (k == 0)) { return 1; } if ((k == 1) || (k == n - 1)) { return n; } // Use symmetry for large k if (k > n / 2) { return binomialCoefficient(n, n - k); } // We use the formula // (n choose k) = n! / (n-k)! / k! // (n choose k) == ((n-k+1)*...*n) / (1*...*k) // which could be written // (n choose k) == (n-1 choose k-1) * n / k long result = 1; if (n <= 61) { // For n <= 61, the naive implementation cannot overflow. int i = n - k + 1; for (int j = 1; j <= k; j++) { result = result * i / j; i++; } } else if (n <= 66) { // For n > 61 but n <= 66, the result cannot overflow, // but we must take care not to overflow intermediate values. int i = n - k + 1; for (int j = 1; j <= k; j++) { // We know that (result * i) is divisible by j, // but (result * i) may overflow, so we split j: // Filter out the gcd, d, so j/d and i/d are integer. // result is divisible by (j/d) because (j/d) // is relative prime to (i/d) and is a divisor of // result * (i/d). final long d = gcd(i, j); result = (result / (j / d)) * (i / d); i++; } } else { // For n > 66, a result overflow might occur, so we check // the multiplication, taking care to not overflow // unnecessary. int i = n - k + 1; for (int j = 1; j <= k; j++) { final long d = gcd(i, j); result = mulAndCheck(result / (j / d), i / d); i++; } } return result; } /** * Returns a {@code double} representation of the Binomial * Coefficient, "{@code n choose k}", the number of * {@code k}-element subsets that can be selected from an * {@code n}-element set. *

* Preconditions: *

    *
  • {@code 0 <= k <= n } (otherwise * {@code IllegalArgumentException} is thrown)
  • *
  • The result is small enough to fit into a {@code double}. The * largest value of {@code n} for which all coefficients are < * Double.MAX_VALUE is 1029. If the computed value exceeds Double.MAX_VALUE, * Double.POSITIVE_INFINITY is returned
  • *

* * @param n the size of the set * @param k the size of the subsets to be counted * @return {@code n choose k} * @throws NotPositiveException if {@code n < 0}. * @throws NumberIsTooLargeException if {@code k > n}. */ public static double binomialCoefficientDouble(final int n, final int k) { ArithmeticUtils.checkBinomial(n, k); if ((n == k) || (k == 0)) { return 1d; } if ((k == 1) || (k == n - 1)) { return n; } if (k > n/2) { return binomialCoefficientDouble(n, n - k); } if (n < 67) { return binomialCoefficient(n,k); } double result = 1d; for (int i = 1; i <= k; i++) { result *= (double)(n - k + i) / (double)i; } return FastMath.floor(result + 0.5); } /** * Returns the natural {@code log} of the Binomial * Coefficient, "{@code n choose k}", the number of * {@code k}-element subsets that can be selected from an * {@code n}-element set. *

* Preconditions: *

    *
  • {@code 0 <= k <= n } (otherwise * {@code IllegalArgumentException} is thrown)
  • *

* * @param n the size of the set * @param k the size of the subsets to be counted * @return {@code n choose k} * @throws NotPositiveException if {@code n < 0}. * @throws NumberIsTooLargeException if {@code k > n}. */ public static double binomialCoefficientLog(final int n, final int k) { ArithmeticUtils.checkBinomial(n, k); if ((n == k) || (k == 0)) { return 0; } if ((k == 1) || (k == n - 1)) { return FastMath.log(n); } /* * For values small enough to do exact integer computation, * return the log of the exact value */ if (n < 67) { return FastMath.log(binomialCoefficient(n,k)); } /* * Return the log of binomialCoefficientDouble for values that will not * overflow binomialCoefficientDouble */ if (n < 1030) { return FastMath.log(binomialCoefficientDouble(n, k)); } if (k > n / 2) { return binomialCoefficientLog(n, n - k); } /* * Sum logs for values that could overflow */ double logSum = 0; // n!/(n-k)! for (int i = n - k + 1; i <= n; i++) { logSum += FastMath.log(i); } // divide by k! for (int i = 2; i <= k; i++) { logSum -= FastMath.log(i); } return logSum; } /** * Returns n!. Shorthand for {@code n} Factorial, the * product of the numbers {@code 1,...,n}. *

* Preconditions: *

    *
  • {@code n >= 0} (otherwise * {@code IllegalArgumentException} is thrown)
  • *
  • The result is small enough to fit into a {@code long}. The * largest value of {@code n} for which {@code n!} < * Long.MAX_VALUE} is 20. If the computed value exceeds {@code Long.MAX_VALUE} * an {@code ArithMeticException } is thrown.
  • *
*

* * @param n argument * @return {@code n!} * @throws MathArithmeticException if the result is too large to be represented * by a {@code long}. * @throws NotPositiveException if {@code n < 0}. * @throws MathArithmeticException if {@code n > 20}: The factorial value is too * large to fit in a {@code long}. */ public static long factorial(final int n) { if (n < 0) { throw new NotPositiveException(LocalizedFormats.FACTORIAL_NEGATIVE_PARAMETER, n); } if (n > 20) { throw new MathArithmeticException(); } return FACTORIALS[n]; } /** * Compute n!, the * factorial of {@code n} (the product of the numbers 1 to n), as a * {@code double}. * The result should be small enough to fit into a {@code double}: The * largest {@code n} for which {@code n! < Double.MAX_VALUE} is 170. * If the computed value exceeds {@code Double.MAX_VALUE}, * {@code Double.POSITIVE_INFINITY} is returned. * * @param n Argument. * @return {@code n!} * @throws NotPositiveException if {@code n < 0}. */ public static double factorialDouble(final int n) { if (n < 0) { throw new NotPositiveException(LocalizedFormats.FACTORIAL_NEGATIVE_PARAMETER, n); } if (n < 21) { return factorial(n); } return FastMath.floor(FastMath.exp(ArithmeticUtils.factorialLog(n)) + 0.5); } /** * Compute the natural logarithm of the factorial of {@code n}. * * @param n Argument. * @return {@code n!} * @throws NotPositiveException if {@code n < 0}. */ public static double factorialLog(final int n) { if (n < 0) { throw new NotPositiveException(LocalizedFormats.FACTORIAL_NEGATIVE_PARAMETER, n); } if (n < 21) { return FastMath.log(factorial(n)); } double logSum = 0; for (int i = 2; i <= n; i++) { logSum += FastMath.log(i); } return logSum; } /** *

* Gets the greatest common divisor of the absolute value of two numbers, * using the "binary gcd" method which avoids division and modulo * operations. See Knuth 4.5.2 algorithm B. This algorithm is due to Josef * Stein (1961). *

* Special cases: *
    *
  • The invocations * {@code gcd(Integer.MIN_VALUE, Integer.MIN_VALUE)}, * {@code gcd(Integer.MIN_VALUE, 0)} and * {@code gcd(0, Integer.MIN_VALUE)} throw an * {@code ArithmeticException}, because the result would be 2^31, which * is too large for an int value.
  • *
  • The result of {@code gcd(x, x)}, {@code gcd(0, x)} and * {@code gcd(x, 0)} is the absolute value of {@code x}, except * for the special cases above. *
  • The invocation {@code gcd(0, 0)} is the only one which returns * {@code 0}.
  • *
* * @param p Number. * @param q Number. * @return the greatest common divisor, never negative. * @throws MathArithmeticException if the result cannot be represented as * a non-negative {@code int} value. * @since 1.1 */ public static int gcd(final int p, final int q) { int u = p; int v = q; if ((u == 0) || (v == 0)) { if ((u == Integer.MIN_VALUE) || (v == Integer.MIN_VALUE)) { throw new MathArithmeticException(LocalizedFormats.GCD_OVERFLOW_32_BITS, p, q); } return FastMath.abs(u) + FastMath.abs(v); } // keep u and v negative, as negative integers range down to // -2^31, while positive numbers can only be as large as 2^31-1 // (i.e. we can't necessarily negate a negative number without // overflow) /* assert u!=0 && v!=0; */ if (u > 0) { u = -u; } // make u negative if (v > 0) { v = -v; } // make v negative // B1. [Find power of 2] int k = 0; while ((u & 1) == 0 && (v & 1) == 0 && k < 31) { // while u and v are // both even... u /= 2; v /= 2; k++; // cast out twos. } if (k == 31) { throw new MathArithmeticException(LocalizedFormats.GCD_OVERFLOW_32_BITS, p, q); } // B2. Initialize: u and v have been divided by 2^k and at least // one is odd. int t = ((u & 1) == 1) ? v : -(u / 2)/* B3 */; // t negative: u was odd, v may be even (t replaces v) // t positive: u was even, v is odd (t replaces u) do { /* assert u<0 && v<0; */ // B4/B3: cast out twos from t. while ((t & 1) == 0) { // while t is even.. t /= 2; // cast out twos } // B5 [reset max(u,v)] if (t > 0) { u = -t; } else { v = t; } // B6/B3. at this point both u and v should be odd. t = (v - u) / 2; // |u| larger: t positive (replace u) // |v| larger: t negative (replace v) } while (t != 0); return -u * (1 << k); // gcd is u*2^k } /** *

* Gets the greatest common divisor of the absolute value of two numbers, * using the "binary gcd" method which avoids division and modulo * operations. See Knuth 4.5.2 algorithm B. This algorithm is due to Josef * Stein (1961). *

* Special cases: *
    *
  • The invocations * {@code gcd(Long.MIN_VALUE, Long.MIN_VALUE)}, * {@code gcd(Long.MIN_VALUE, 0L)} and * {@code gcd(0L, Long.MIN_VALUE)} throw an * {@code ArithmeticException}, because the result would be 2^63, which * is too large for a long value.
  • *
  • The result of {@code gcd(x, x)}, {@code gcd(0L, x)} and * {@code gcd(x, 0L)} is the absolute value of {@code x}, except * for the special cases above. *
  • The invocation {@code gcd(0L, 0L)} is the only one which returns * {@code 0L}.
  • *
* * @param p Number. * @param q Number. * @return the greatest common divisor, never negative. * @throws MathArithmeticException if the result cannot be represented as * a non-negative {@code long} value. * @since 2.1 */ public static long gcd(final long p, final long q) { long u = p; long v = q; if ((u == 0) || (v == 0)) { if ((u == Long.MIN_VALUE) || (v == Long.MIN_VALUE)){ throw new MathArithmeticException(LocalizedFormats.GCD_OVERFLOW_64_BITS, p, q); } return FastMath.abs(u) + FastMath.abs(v); } // keep u and v negative, as negative integers range down to // -2^63, while positive numbers can only be as large as 2^63-1 // (i.e. we can't necessarily negate a negative number without // overflow) /* assert u!=0 && v!=0; */ if (u > 0) { u = -u; } // make u negative if (v > 0) { v = -v; } // make v negative // B1. [Find power of 2] int k = 0; while ((u & 1) == 0 && (v & 1) == 0 && k < 63) { // while u and v are // both even... u /= 2; v /= 2; k++; // cast out twos. } if (k == 63) { throw new MathArithmeticException(LocalizedFormats.GCD_OVERFLOW_64_BITS, p, q); } // B2. Initialize: u and v have been divided by 2^k and at least // one is odd. long t = ((u & 1) == 1) ? v : -(u / 2)/* B3 */; // t negative: u was odd, v may be even (t replaces v) // t positive: u was even, v is odd (t replaces u) do { /* assert u<0 && v<0; */ // B4/B3: cast out twos from t. while ((t & 1) == 0) { // while t is even.. t /= 2; // cast out twos } // B5 [reset max(u,v)] if (t > 0) { u = -t; } else { v = t; } // B6/B3. at this point both u and v should be odd. t = (v - u) / 2; // |u| larger: t positive (replace u) // |v| larger: t negative (replace v) } while (t != 0); return -u * (1L << k); // gcd is u*2^k } /** *

* Returns the least common multiple of the absolute value of two numbers, * using the formula {@code lcm(a,b) = (a / gcd(a,b)) * b}. *

* Special cases: *
    *
  • The invocations {@code lcm(Integer.MIN_VALUE, n)} and * {@code lcm(n, Integer.MIN_VALUE)}, where {@code abs(n)} is a * power of 2, throw an {@code ArithmeticException}, because the result * would be 2^31, which is too large for an int value.
  • *
  • The result of {@code lcm(0, x)} and {@code lcm(x, 0)} is * {@code 0} for any {@code x}. *
* * @param a Number. * @param b Number. * @return the least common multiple, never negative. * @throws MathArithmeticException if the result cannot be represented as * a non-negative {@code int} value. * @since 1.1 */ public static int lcm(int a, int b) { if (a == 0 || b == 0){ return 0; } int lcm = FastMath.abs(ArithmeticUtils.mulAndCheck(a / gcd(a, b), b)); if (lcm == Integer.MIN_VALUE) { throw new MathArithmeticException(LocalizedFormats.LCM_OVERFLOW_32_BITS, a, b); } return lcm; } /** *

* Returns the least common multiple of the absolute value of two numbers, * using the formula {@code lcm(a,b) = (a / gcd(a,b)) * b}. *

* Special cases: *
    *
  • The invocations {@code lcm(Long.MIN_VALUE, n)} and * {@code lcm(n, Long.MIN_VALUE)}, where {@code abs(n)} is a * power of 2, throw an {@code ArithmeticException}, because the result * would be 2^63, which is too large for an int value.
  • *
  • The result of {@code lcm(0L, x)} and {@code lcm(x, 0L)} is * {@code 0L} for any {@code x}. *
* * @param a Number. * @param b Number. * @return the least common multiple, never negative. * @throws MathArithmeticException if the result cannot be represented * as a non-negative {@code long} value. * @since 2.1 */ public static long lcm(long a, long b) { if (a == 0 || b == 0){ return 0; } long lcm = FastMath.abs(ArithmeticUtils.mulAndCheck(a / gcd(a, b), b)); if (lcm == Long.MIN_VALUE){ throw new MathArithmeticException(LocalizedFormats.LCM_OVERFLOW_64_BITS, a, b); } return lcm; } /** * Multiply two integers, checking for overflow. * * @param x Factor. * @param y Factor. * @return the product {@code x * y}. * @throws MathArithmeticException if the result can not be * represented as an {@code int}. * @since 1.1 */ public static int mulAndCheck(int x, int y) { long m = ((long)x) * ((long)y); if (m < Integer.MIN_VALUE || m > Integer.MAX_VALUE) { throw new MathArithmeticException(); } return (int)m; } /** * Multiply two long integers, checking for overflow. * * @param a Factor. * @param b Factor. * @return the product {@code a * b}. * @throws MathArithmeticException if the result can not be represented * as a {@code long}. * @since 1.2 */ public static long mulAndCheck(long a, long b) { long ret; if (a > b) { // use symmetry to reduce boundary cases ret = mulAndCheck(b, a); } else { if (a < 0) { if (b < 0) { // check for positive overflow with negative a, negative b if (a >= Long.MAX_VALUE / b) { ret = a * b; } else { throw new MathArithmeticException(); } } else if (b > 0) { // check for negative overflow with negative a, positive b if (Long.MIN_VALUE / b <= a) { ret = a * b; } else { throw new MathArithmeticException(); } } else { // assert b == 0 ret = 0; } } else if (a > 0) { // assert a > 0 // assert b > 0 // check for positive overflow with positive a, positive b if (a <= Long.MAX_VALUE / b) { ret = a * b; } else { throw new MathArithmeticException(); } } else { // assert a == 0 ret = 0; } } return ret; } /** * Subtract two integers, checking for overflow. * * @param x Minuend. * @param y Subtrahend. * @return the difference {@code x - y}. * @throws MathArithmeticException if the result can not be represented * as an {@code int}. * @since 1.1 */ public static int subAndCheck(int x, int y) { long s = (long)x - (long)y; if (s < Integer.MIN_VALUE || s > Integer.MAX_VALUE) { throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_SUBTRACTION, x, y); } return (int)s; } /** * Subtract two long integers, checking for overflow. * * @param a Value. * @param b Value. * @return the difference {@code a - b}. * @throws MathArithmeticException if the result can not be represented as a * {@code long}. * @since 1.2 */ public static long subAndCheck(long a, long b) { long ret; if (b == Long.MIN_VALUE) { if (a < 0) { ret = a - b; } else { throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_ADDITION, a, -b); } } else { // use additive inverse ret = addAndCheck(a, -b, LocalizedFormats.OVERFLOW_IN_ADDITION); } return ret; } /** * Raise an int to an int power. * * @param k Number to raise. * @param e Exponent (must be positive or zero). * @return ke * @throws NotPositiveException if {@code e < 0}. */ public static int pow(final int k, int e) { if (e < 0) { throw new NotPositiveException(LocalizedFormats.EXPONENT, e); } int result = 1; int k2p = k; while (e != 0) { if ((e & 0x1) != 0) { result *= k2p; } k2p *= k2p; e = e >> 1; } return result; } /** * Raise an int to a long power. * * @param k Number to raise. * @param e Exponent (must be positive or zero). * @return ke * @throws NotPositiveException if {@code e < 0}. */ public static int pow(final int k, long e) { if (e < 0) { throw new NotPositiveException(LocalizedFormats.EXPONENT, e); } int result = 1; int k2p = k; while (e != 0) { if ((e & 0x1) != 0) { result *= k2p; } k2p *= k2p; e = e >> 1; } return result; } /** * Raise a long to an int power. * * @param k Number to raise. * @param e Exponent (must be positive or zero). * @return ke * @throws NotPositiveException if {@code e < 0}. */ public static long pow(final long k, int e) { if (e < 0) { throw new NotPositiveException(LocalizedFormats.EXPONENT, e); } long result = 1l; long k2p = k; while (e != 0) { if ((e & 0x1) != 0) { result *= k2p; } k2p *= k2p; e = e >> 1; } return result; } /** * Raise a long to a long power. * * @param k Number to raise. * @param e Exponent (must be positive or zero). * @return ke * @throws NotPositiveException if {@code e < 0}. */ public static long pow(final long k, long e) { if (e < 0) { throw new NotPositiveException(LocalizedFormats.EXPONENT, e); } long result = 1l; long k2p = k; while (e != 0) { if ((e & 0x1) != 0) { result *= k2p; } k2p *= k2p; e = e >> 1; } return result; } /** * Raise a BigInteger to an int power. * * @param k Number to raise. * @param e Exponent (must be positive or zero). * @return ke * @throws NotPositiveException if {@code e < 0}. */ public static BigInteger pow(final BigInteger k, int e) { if (e < 0) { throw new NotPositiveException(LocalizedFormats.EXPONENT, e); } return k.pow(e); } /** * Raise a BigInteger to a long power. * * @param k Number to raise. * @param e Exponent (must be positive or zero). * @return ke * @throws NotPositiveException if {@code e < 0}. */ public static BigInteger pow(final BigInteger k, long e) { if (e < 0) { throw new NotPositiveException(LocalizedFormats.EXPONENT, e); } BigInteger result = BigInteger.ONE; BigInteger k2p = k; while (e != 0) { if ((e & 0x1) != 0) { result = result.multiply(k2p); } k2p = k2p.multiply(k2p); e = e >> 1; } return result; } /** * Raise a BigInteger to a BigInteger power. * * @param k Number to raise. * @param e Exponent (must be positive or zero). * @return ke * @throws NotPositiveException if {@code e < 0}. */ public static BigInteger pow(final BigInteger k, BigInteger e) { if (e.compareTo(BigInteger.ZERO) < 0) { throw new NotPositiveException(LocalizedFormats.EXPONENT, e); } BigInteger result = BigInteger.ONE; BigInteger k2p = k; while (!BigInteger.ZERO.equals(e)) { if (e.testBit(0)) { result = result.multiply(k2p); } k2p = k2p.multiply(k2p); e = e.shiftRight(1); } return result; } /** * Add two long integers, checking for overflow. * * @param a Addend. * @param b Addend. * @param pattern Pattern to use for any thrown exception. * @return the sum {@code a + b}. * @throws MathArithmeticException if the result cannot be represented * as a {@code long}. * @since 1.2 */ private static long addAndCheck(long a, long b, Localizable pattern) { long ret; if (a > b) { // use symmetry to reduce boundary cases ret = addAndCheck(b, a, pattern); } else { // assert a <= b if (a < 0) { if (b < 0) { // check for negative overflow if (Long.MIN_VALUE - b <= a) { ret = a + b; } else { throw new MathArithmeticException(pattern, a, b); } } else { // opposite sign addition is always safe ret = a + b; } } else { // assert a >= 0 // assert b >= 0 // check for positive overflow if (a <= Long.MAX_VALUE - b) { ret = a + b; } else { throw new MathArithmeticException(pattern, a, b); } } } return ret; } /** * Check binomial preconditions. * * @param n Size of the set. * @param k Size of the subsets to be counted. * @throws NotPositiveException if {@code n < 0}. * @throws NumberIsTooLargeException if {@code k > n}. */ private static void checkBinomial(final int n, final int k) { if (n < k) { throw new NumberIsTooLargeException(LocalizedFormats.BINOMIAL_INVALID_PARAMETERS_ORDER, k, n, true); } if (n < 0) { throw new NotPositiveException(LocalizedFormats.BINOMIAL_NEGATIVE_PARAMETER, n); } } /** * Returns true if the argument is a power of two. * * @param n the number to test * @return true if the argument is a power of two */ public static boolean isPowerOfTwo(long n) { return (n > 0) && ((n & (n - 1)) == 0); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy