org.apache.commons.math3.analysis.polynomials.PolynomialsUtils Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of commons-math3 Show documentation
Show all versions of commons-math3 Show documentation
The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.analysis.polynomials;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import org.apache.commons.math3.fraction.BigFraction;
import org.apache.commons.math3.util.ArithmeticUtils;
import org.apache.commons.math3.util.FastMath;
/**
* A collection of static methods that operate on or return polynomials.
*
* @version $Id: PolynomialsUtils.java 1364387 2012-07-22 18:14:11Z tn $
* @since 2.0
*/
public class PolynomialsUtils {
/** Coefficients for Chebyshev polynomials. */
private static final List CHEBYSHEV_COEFFICIENTS;
/** Coefficients for Hermite polynomials. */
private static final List HERMITE_COEFFICIENTS;
/** Coefficients for Laguerre polynomials. */
private static final List LAGUERRE_COEFFICIENTS;
/** Coefficients for Legendre polynomials. */
private static final List LEGENDRE_COEFFICIENTS;
/** Coefficients for Jacobi polynomials. */
private static final Map> JACOBI_COEFFICIENTS;
static {
// initialize recurrence for Chebyshev polynomials
// T0(X) = 1, T1(X) = 0 + 1 * X
CHEBYSHEV_COEFFICIENTS = new ArrayList();
CHEBYSHEV_COEFFICIENTS.add(BigFraction.ONE);
CHEBYSHEV_COEFFICIENTS.add(BigFraction.ZERO);
CHEBYSHEV_COEFFICIENTS.add(BigFraction.ONE);
// initialize recurrence for Hermite polynomials
// H0(X) = 1, H1(X) = 0 + 2 * X
HERMITE_COEFFICIENTS = new ArrayList();
HERMITE_COEFFICIENTS.add(BigFraction.ONE);
HERMITE_COEFFICIENTS.add(BigFraction.ZERO);
HERMITE_COEFFICIENTS.add(BigFraction.TWO);
// initialize recurrence for Laguerre polynomials
// L0(X) = 1, L1(X) = 1 - 1 * X
LAGUERRE_COEFFICIENTS = new ArrayList();
LAGUERRE_COEFFICIENTS.add(BigFraction.ONE);
LAGUERRE_COEFFICIENTS.add(BigFraction.ONE);
LAGUERRE_COEFFICIENTS.add(BigFraction.MINUS_ONE);
// initialize recurrence for Legendre polynomials
// P0(X) = 1, P1(X) = 0 + 1 * X
LEGENDRE_COEFFICIENTS = new ArrayList();
LEGENDRE_COEFFICIENTS.add(BigFraction.ONE);
LEGENDRE_COEFFICIENTS.add(BigFraction.ZERO);
LEGENDRE_COEFFICIENTS.add(BigFraction.ONE);
// initialize map for Jacobi polynomials
JACOBI_COEFFICIENTS = new HashMap>();
}
/**
* Private constructor, to prevent instantiation.
*/
private PolynomialsUtils() {
}
/**
* Create a Chebyshev polynomial of the first kind.
* Chebyshev
* polynomials of the first kind are orthogonal polynomials.
* They can be defined by the following recurrence relations:
*
* T0(X) = 1
* T1(X) = X
* Tk+1(X) = 2X Tk(X) - Tk-1(X)
*
* @param degree degree of the polynomial
* @return Chebyshev polynomial of specified degree
*/
public static PolynomialFunction createChebyshevPolynomial(final int degree) {
return buildPolynomial(degree, CHEBYSHEV_COEFFICIENTS,
new RecurrenceCoefficientsGenerator() {
private final BigFraction[] coeffs = { BigFraction.ZERO, BigFraction.TWO, BigFraction.ONE };
/** {@inheritDoc} */
public BigFraction[] generate(int k) {
return coeffs;
}
});
}
/**
* Create a Hermite polynomial.
* Hermite
* polynomials are orthogonal polynomials.
* They can be defined by the following recurrence relations:
*
* H0(X) = 1
* H1(X) = 2X
* Hk+1(X) = 2X Hk(X) - 2k Hk-1(X)
*
* @param degree degree of the polynomial
* @return Hermite polynomial of specified degree
*/
public static PolynomialFunction createHermitePolynomial(final int degree) {
return buildPolynomial(degree, HERMITE_COEFFICIENTS,
new RecurrenceCoefficientsGenerator() {
/** {@inheritDoc} */
public BigFraction[] generate(int k) {
return new BigFraction[] {
BigFraction.ZERO,
BigFraction.TWO,
new BigFraction(2 * k)};
}
});
}
/**
* Create a Laguerre polynomial.
* Laguerre
* polynomials are orthogonal polynomials.
* They can be defined by the following recurrence relations:
*
* L0(X) = 1
* L1(X) = 1 - X
* (k+1) Lk+1(X) = (2k + 1 - X) Lk(X) - k Lk-1(X)
*
* @param degree degree of the polynomial
* @return Laguerre polynomial of specified degree
*/
public static PolynomialFunction createLaguerrePolynomial(final int degree) {
return buildPolynomial(degree, LAGUERRE_COEFFICIENTS,
new RecurrenceCoefficientsGenerator() {
/** {@inheritDoc} */
public BigFraction[] generate(int k) {
final int kP1 = k + 1;
return new BigFraction[] {
new BigFraction(2 * k + 1, kP1),
new BigFraction(-1, kP1),
new BigFraction(k, kP1)};
}
});
}
/**
* Create a Legendre polynomial.
* Legendre
* polynomials are orthogonal polynomials.
* They can be defined by the following recurrence relations:
*
* P0(X) = 1
* P1(X) = X
* (k+1) Pk+1(X) = (2k+1) X Pk(X) - k Pk-1(X)
*
* @param degree degree of the polynomial
* @return Legendre polynomial of specified degree
*/
public static PolynomialFunction createLegendrePolynomial(final int degree) {
return buildPolynomial(degree, LEGENDRE_COEFFICIENTS,
new RecurrenceCoefficientsGenerator() {
/** {@inheritDoc} */
public BigFraction[] generate(int k) {
final int kP1 = k + 1;
return new BigFraction[] {
BigFraction.ZERO,
new BigFraction(k + kP1, kP1),
new BigFraction(k, kP1)};
}
});
}
/**
* Create a Jacobi polynomial.
* Jacobi
* polynomials are orthogonal polynomials.
* They can be defined by the following recurrence relations:
*
* P0vw(X) = 1
* P-1vw(X) = 0
* 2k(k + v + w)(2k + v + w - 2) Pkvw(X) =
* (2k + v + w - 1)[(2k + v + w)(2k + v + w - 2) X + v2 - w2] Pk-1vw(X)
* - 2(k + v - 1)(k + w - 1)(2k + v + w) Pk-2vw(X)
*
* @param degree degree of the polynomial
* @param v first exponent
* @param w second exponent
* @return Jacobi polynomial of specified degree
*/
public static PolynomialFunction createJacobiPolynomial(final int degree, final int v, final int w) {
// select the appropriate list
final JacobiKey key = new JacobiKey(v, w);
if (!JACOBI_COEFFICIENTS.containsKey(key)) {
// allocate a new list for v, w
final List list = new ArrayList();
JACOBI_COEFFICIENTS.put(key, list);
// Pv,w,0(x) = 1;
list.add(BigFraction.ONE);
// P1(x) = (v - w) / 2 + (2 + v + w) * X / 2
list.add(new BigFraction(v - w, 2));
list.add(new BigFraction(2 + v + w, 2));
}
return buildPolynomial(degree, JACOBI_COEFFICIENTS.get(key),
new RecurrenceCoefficientsGenerator() {
/** {@inheritDoc} */
public BigFraction[] generate(int k) {
k++;
final int kvw = k + v + w;
final int twoKvw = kvw + k;
final int twoKvwM1 = twoKvw - 1;
final int twoKvwM2 = twoKvw - 2;
final int den = 2 * k * kvw * twoKvwM2;
return new BigFraction[] {
new BigFraction(twoKvwM1 * (v * v - w * w), den),
new BigFraction(twoKvwM1 * twoKvw * twoKvwM2, den),
new BigFraction(2 * (k + v - 1) * (k + w - 1) * twoKvw, den)
};
}
});
}
/** Inner class for Jacobi polynomials keys. */
private static class JacobiKey {
/** First exponent. */
private final int v;
/** Second exponent. */
private final int w;
/** Simple constructor.
* @param v first exponent
* @param w second exponent
*/
public JacobiKey(final int v, final int w) {
this.v = v;
this.w = w;
}
/** Get hash code.
* @return hash code
*/
@Override
public int hashCode() {
return (v << 16) ^ w;
}
/** Check if the instance represent the same key as another instance.
* @param key other key
* @return true if the instance and the other key refer to the same polynomial
*/
@Override
public boolean equals(final Object key) {
if ((key == null) || !(key instanceof JacobiKey)) {
return false;
}
final JacobiKey otherK = (JacobiKey) key;
return (v == otherK.v) && (w == otherK.w);
}
}
/**
* Compute the coefficients of the polynomial Ps(x)
* whose values at point {@code x} will be the same as the those from the
* original polynomial P(x)
when computed at {@code x + shift}.
* Thus, if P(x) = Σi ai xi
,
* then
*
*
*
* Ps(x)
* = Σi bi xi
*
*
*
* = Σi ai (x + shift)i
*
*
*
*
* @param coefficients Coefficients of the original polynomial.
* @param shift Shift value.
* @return the coefficients bi
of the shifted
* polynomial.
*/
public static double[] shift(final double[] coefficients,
final double shift) {
final int dp1 = coefficients.length;
final double[] newCoefficients = new double[dp1];
// Pascal triangle.
final int[][] coeff = new int[dp1][dp1];
for (int i = 0; i < dp1; i++){
for(int j = 0; j <= i; j++){
coeff[i][j] = (int) ArithmeticUtils.binomialCoefficient(i, j);
}
}
// First polynomial coefficient.
for (int i = 0; i < dp1; i++){
newCoefficients[0] += coefficients[i] * FastMath.pow(shift, i);
}
// Superior order.
final int d = dp1 - 1;
for (int i = 0; i < d; i++) {
for (int j = i; j < d; j++){
newCoefficients[i + 1] += coeff[j + 1][j - i] *
coefficients[j + 1] * FastMath.pow(shift, j - i);
}
}
return newCoefficients;
}
/** Get the coefficients array for a given degree.
* @param degree degree of the polynomial
* @param coefficients list where the computed coefficients are stored
* @param generator recurrence coefficients generator
* @return coefficients array
*/
private static PolynomialFunction buildPolynomial(final int degree,
final List