All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.optimization.direct.BaseAbstractMultivariateOptimizer Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 3.6.1
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.optimization.direct;

import org.apache.commons.math3.util.Incrementor;
import org.apache.commons.math3.exception.MaxCountExceededException;
import org.apache.commons.math3.exception.TooManyEvaluationsException;
import org.apache.commons.math3.analysis.MultivariateFunction;
import org.apache.commons.math3.optimization.BaseMultivariateOptimizer;
import org.apache.commons.math3.optimization.OptimizationData;
import org.apache.commons.math3.optimization.GoalType;
import org.apache.commons.math3.optimization.InitialGuess;
import org.apache.commons.math3.optimization.SimpleBounds;
import org.apache.commons.math3.optimization.ConvergenceChecker;
import org.apache.commons.math3.optimization.PointValuePair;
import org.apache.commons.math3.optimization.SimpleValueChecker;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;

/**
 * Base class for implementing optimizers for multivariate scalar functions.
 * This base class handles the boiler-plate methods associated to thresholds,
 * evaluations counting, initial guess and simple bounds settings.
 *
 * @param  Type of the objective function to be optimized.
 *
 * @version $Id: BaseAbstractMultivariateOptimizer.java 1422313 2012-12-15 18:53:41Z psteitz $
 * @deprecated As of 3.1 (to be removed in 4.0).
 * @since 2.2
 */
@Deprecated
public abstract class BaseAbstractMultivariateOptimizer
    implements BaseMultivariateOptimizer {
    /** Evaluations counter. */
    protected final Incrementor evaluations = new Incrementor();
    /** Convergence checker. */
    private ConvergenceChecker checker;
    /** Type of optimization. */
    private GoalType goal;
    /** Initial guess. */
    private double[] start;
    /** Lower bounds. */
    private double[] lowerBound;
    /** Upper bounds. */
    private double[] upperBound;
    /** Objective function. */
    private MultivariateFunction function;

    /**
     * Simple constructor with default settings.
     * The convergence check is set to a {@link SimpleValueChecker}.
     * @deprecated See {@link SimpleValueChecker#SimpleValueChecker()}
     */
    @Deprecated
    protected BaseAbstractMultivariateOptimizer() {
        this(new SimpleValueChecker());
    }
    /**
     * @param checker Convergence checker.
     */
    protected BaseAbstractMultivariateOptimizer(ConvergenceChecker checker) {
        this.checker = checker;
    }

    /** {@inheritDoc} */
    public int getMaxEvaluations() {
        return evaluations.getMaximalCount();
    }

    /** {@inheritDoc} */
    public int getEvaluations() {
        return evaluations.getCount();
    }

    /** {@inheritDoc} */
    public ConvergenceChecker getConvergenceChecker() {
        return checker;
    }

    /**
     * Compute the objective function value.
     *
     * @param point Point at which the objective function must be evaluated.
     * @return the objective function value at the specified point.
     * @throws TooManyEvaluationsException if the maximal number of
     * evaluations is exceeded.
     */
    protected double computeObjectiveValue(double[] point) {
        try {
            evaluations.incrementCount();
        } catch (MaxCountExceededException e) {
            throw new TooManyEvaluationsException(e.getMax());
        }
        return function.value(point);
    }

    /**
     * {@inheritDoc}
     *
     * @deprecated As of 3.1. Please use
     * {@link #optimize(int,MultivariateFunction,GoalType,OptimizationData[])}
     * instead.
     */
    @Deprecated
    public PointValuePair optimize(int maxEval, FUNC f, GoalType goalType,
                                   double[] startPoint) {
        return optimizeInternal(maxEval, f, goalType, new InitialGuess(startPoint));
    }

    /**
     * Optimize an objective function.
     *
     * @param maxEval Allowed number of evaluations of the objective function.
     * @param f Objective function.
     * @param goalType Optimization type.
     * @param optData Optimization data. The following data will be looked for:
     * 
    *
  • {@link InitialGuess}
  • *
  • {@link SimpleBounds}
  • *
* @return the point/value pair giving the optimal value of the objective * function. * @since 3.1 */ public PointValuePair optimize(int maxEval, FUNC f, GoalType goalType, OptimizationData... optData) { return optimizeInternal(maxEval, f, goalType, optData); } /** * Optimize an objective function. * * @param f Objective function. * @param goalType Type of optimization goal: either * {@link GoalType#MAXIMIZE} or {@link GoalType#MINIMIZE}. * @param startPoint Start point for optimization. * @param maxEval Maximum number of function evaluations. * @return the point/value pair giving the optimal value for objective * function. * @throws org.apache.commons.math3.exception.DimensionMismatchException * if the start point dimension is wrong. * @throws org.apache.commons.math3.exception.TooManyEvaluationsException * if the maximal number of evaluations is exceeded. * @throws org.apache.commons.math3.exception.NullArgumentException if * any argument is {@code null}. * @deprecated As of 3.1. Please use * {@link #optimize(int,MultivariateFunction,GoalType,OptimizationData[])} * instead. */ @Deprecated protected PointValuePair optimizeInternal(int maxEval, FUNC f, GoalType goalType, double[] startPoint) { return optimizeInternal(maxEval, f, goalType, new InitialGuess(startPoint)); } /** * Optimize an objective function. * * @param maxEval Allowed number of evaluations of the objective function. * @param f Objective function. * @param goalType Optimization type. * @param optData Optimization data. The following data will be looked for: *
    *
  • {@link InitialGuess}
  • *
  • {@link SimpleBounds}
  • *
* @return the point/value pair giving the optimal value of the objective * function. * @throws TooManyEvaluationsException if the maximal number of * evaluations is exceeded. * @since 3.1 */ protected PointValuePair optimizeInternal(int maxEval, FUNC f, GoalType goalType, OptimizationData... optData) throws TooManyEvaluationsException { // Set internal state. evaluations.setMaximalCount(maxEval); evaluations.resetCount(); function = f; goal = goalType; // Retrieve other settings. parseOptimizationData(optData); // Check input consistency. checkParameters(); // Perform computation. return doOptimize(); } /** * Scans the list of (required and optional) optimization data that * characterize the problem. * * @param optData Optimization data. The following data will be looked for: *
    *
  • {@link InitialGuess}
  • *
  • {@link SimpleBounds}
  • *
*/ private void parseOptimizationData(OptimizationData... optData) { // The existing values (as set by the previous call) are reused if // not provided in the argument list. for (OptimizationData data : optData) { if (data instanceof InitialGuess) { start = ((InitialGuess) data).getInitialGuess(); continue; } if (data instanceof SimpleBounds) { final SimpleBounds bounds = (SimpleBounds) data; lowerBound = bounds.getLower(); upperBound = bounds.getUpper(); continue; } } } /** * @return the optimization type. */ public GoalType getGoalType() { return goal; } /** * @return the initial guess. */ public double[] getStartPoint() { return start == null ? null : start.clone(); } /** * @return the lower bounds. * @since 3.1 */ public double[] getLowerBound() { return lowerBound == null ? null : lowerBound.clone(); } /** * @return the upper bounds. * @since 3.1 */ public double[] getUpperBound() { return upperBound == null ? null : upperBound.clone(); } /** * Perform the bulk of the optimization algorithm. * * @return the point/value pair giving the optimal value of the * objective function. */ protected abstract PointValuePair doOptimize(); /** * Check parameters consistency. */ private void checkParameters() { if (start != null) { final int dim = start.length; if (lowerBound != null) { if (lowerBound.length != dim) { throw new DimensionMismatchException(lowerBound.length, dim); } for (int i = 0; i < dim; i++) { final double v = start[i]; final double lo = lowerBound[i]; if (v < lo) { throw new NumberIsTooSmallException(v, lo, true); } } } if (upperBound != null) { if (upperBound.length != dim) { throw new DimensionMismatchException(upperBound.length, dim); } for (int i = 0; i < dim; i++) { final double v = start[i]; final double hi = upperBound[i]; if (v > hi) { throw new NumberIsTooLargeException(v, hi, true); } } } // If the bounds were not specified, the allowed interval is // assumed to be [-inf, +inf]. if (lowerBound == null) { lowerBound = new double[dim]; for (int i = 0; i < dim; i++) { lowerBound[i] = Double.NEGATIVE_INFINITY; } } if (upperBound == null) { upperBound = new double[dim]; for (int i = 0; i < dim; i++) { upperBound[i] = Double.POSITIVE_INFINITY; } } } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy