All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.stat.descriptive.SummaryStatistics Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 3.6.1
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.stat.descriptive;

import java.io.Serializable;

import org.apache.commons.math3.exception.MathIllegalStateException;
import org.apache.commons.math3.exception.NullArgumentException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.stat.descriptive.moment.GeometricMean;
import org.apache.commons.math3.stat.descriptive.moment.Mean;
import org.apache.commons.math3.stat.descriptive.moment.SecondMoment;
import org.apache.commons.math3.stat.descriptive.moment.Variance;
import org.apache.commons.math3.stat.descriptive.rank.Max;
import org.apache.commons.math3.stat.descriptive.rank.Min;
import org.apache.commons.math3.stat.descriptive.summary.Sum;
import org.apache.commons.math3.stat.descriptive.summary.SumOfLogs;
import org.apache.commons.math3.stat.descriptive.summary.SumOfSquares;
import org.apache.commons.math3.util.MathUtils;
import org.apache.commons.math3.util.Precision;
import org.apache.commons.math3.util.FastMath;

/**
 * 

* Computes summary statistics for a stream of data values added using the * {@link #addValue(double) addValue} method. The data values are not stored in * memory, so this class can be used to compute statistics for very large data * streams. *

*

* The {@link StorelessUnivariateStatistic} instances used to maintain summary * state and compute statistics are configurable via setters. For example, the * default implementation for the variance can be overridden by calling * {@link #setVarianceImpl(StorelessUnivariateStatistic)}. Actual parameters to * these methods must implement the {@link StorelessUnivariateStatistic} * interface and configuration must be completed before addValue * is called. No configuration is necessary to use the default, commons-math * provided implementations. *

*

* Note: This class is not thread-safe. Use * {@link SynchronizedSummaryStatistics} if concurrent access from multiple * threads is required. *

* @version $Id: SummaryStatistics.java 1416643 2012-12-03 19:37:14Z tn $ */ public class SummaryStatistics implements StatisticalSummary, Serializable { /** Serialization UID */ private static final long serialVersionUID = -2021321786743555871L; /** count of values that have been added */ private long n = 0; /** SecondMoment is used to compute the mean and variance */ private SecondMoment secondMoment = new SecondMoment(); /** sum of values that have been added */ private Sum sum = new Sum(); /** sum of the square of each value that has been added */ private SumOfSquares sumsq = new SumOfSquares(); /** min of values that have been added */ private Min min = new Min(); /** max of values that have been added */ private Max max = new Max(); /** sumLog of values that have been added */ private SumOfLogs sumLog = new SumOfLogs(); /** geoMean of values that have been added */ private GeometricMean geoMean = new GeometricMean(sumLog); /** mean of values that have been added */ private Mean mean = new Mean(secondMoment); /** variance of values that have been added */ private Variance variance = new Variance(secondMoment); /** Sum statistic implementation - can be reset by setter. */ private StorelessUnivariateStatistic sumImpl = sum; /** Sum of squares statistic implementation - can be reset by setter. */ private StorelessUnivariateStatistic sumsqImpl = sumsq; /** Minimum statistic implementation - can be reset by setter. */ private StorelessUnivariateStatistic minImpl = min; /** Maximum statistic implementation - can be reset by setter. */ private StorelessUnivariateStatistic maxImpl = max; /** Sum of log statistic implementation - can be reset by setter. */ private StorelessUnivariateStatistic sumLogImpl = sumLog; /** Geometric mean statistic implementation - can be reset by setter. */ private StorelessUnivariateStatistic geoMeanImpl = geoMean; /** Mean statistic implementation - can be reset by setter. */ private StorelessUnivariateStatistic meanImpl = mean; /** Variance statistic implementation - can be reset by setter. */ private StorelessUnivariateStatistic varianceImpl = variance; /** * Construct a SummaryStatistics instance */ public SummaryStatistics() { } /** * A copy constructor. Creates a deep-copy of the {@code original}. * * @param original the {@code SummaryStatistics} instance to copy * @throws NullArgumentException if original is null */ public SummaryStatistics(SummaryStatistics original) throws NullArgumentException { copy(original, this); } /** * Return a {@link StatisticalSummaryValues} instance reporting current * statistics. * @return Current values of statistics */ public StatisticalSummary getSummary() { return new StatisticalSummaryValues(getMean(), getVariance(), getN(), getMax(), getMin(), getSum()); } /** * Add a value to the data * @param value the value to add */ public void addValue(double value) { sumImpl.increment(value); sumsqImpl.increment(value); minImpl.increment(value); maxImpl.increment(value); sumLogImpl.increment(value); secondMoment.increment(value); // If mean, variance or geomean have been overridden, // need to increment these if (meanImpl != mean) { meanImpl.increment(value); } if (varianceImpl != variance) { varianceImpl.increment(value); } if (geoMeanImpl != geoMean) { geoMeanImpl.increment(value); } n++; } /** * Returns the number of available values * @return The number of available values */ public long getN() { return n; } /** * Returns the sum of the values that have been added * @return The sum or Double.NaN if no values have been added */ public double getSum() { return sumImpl.getResult(); } /** * Returns the sum of the squares of the values that have been added. *

* Double.NaN is returned if no values have been added. *

* @return The sum of squares */ public double getSumsq() { return sumsqImpl.getResult(); } /** * Returns the mean of the values that have been added. *

* Double.NaN is returned if no values have been added. *

* @return the mean */ public double getMean() { return meanImpl.getResult(); } /** * Returns the standard deviation of the values that have been added. *

* Double.NaN is returned if no values have been added. *

* @return the standard deviation */ public double getStandardDeviation() { double stdDev = Double.NaN; if (getN() > 0) { if (getN() > 1) { stdDev = FastMath.sqrt(getVariance()); } else { stdDev = 0.0; } } return stdDev; } /** * Returns the (sample) variance of the available values. * *

This method returns the bias-corrected sample variance (using {@code n - 1} in * the denominator). Use {@link #getPopulationVariance()} for the non-bias-corrected * population variance.

* *

Double.NaN is returned if no values have been added.

* * @return the variance */ public double getVariance() { return varianceImpl.getResult(); } /** * Returns the * population variance of the values that have been added. * *

Double.NaN is returned if no values have been added.

* * @return the population variance */ public double getPopulationVariance() { Variance populationVariance = new Variance(secondMoment); populationVariance.setBiasCorrected(false); return populationVariance.getResult(); } /** * Returns the maximum of the values that have been added. *

* Double.NaN is returned if no values have been added. *

* @return the maximum */ public double getMax() { return maxImpl.getResult(); } /** * Returns the minimum of the values that have been added. *

* Double.NaN is returned if no values have been added. *

* @return the minimum */ public double getMin() { return minImpl.getResult(); } /** * Returns the geometric mean of the values that have been added. *

* Double.NaN is returned if no values have been added. *

* @return the geometric mean */ public double getGeometricMean() { return geoMeanImpl.getResult(); } /** * Returns the sum of the logs of the values that have been added. *

* Double.NaN is returned if no values have been added. *

* @return the sum of logs * @since 1.2 */ public double getSumOfLogs() { return sumLogImpl.getResult(); } /** * Returns a statistic related to the Second Central Moment. Specifically, * what is returned is the sum of squared deviations from the sample mean * among the values that have been added. *

* Returns Double.NaN if no data values have been added and * returns 0 if there is just one value in the data set.

*

* @return second central moment statistic * @since 2.0 */ public double getSecondMoment() { return secondMoment.getResult(); } /** * Generates a text report displaying summary statistics from values that * have been added. * @return String with line feeds displaying statistics * @since 1.2 */ @Override public String toString() { StringBuilder outBuffer = new StringBuilder(); String endl = "\n"; outBuffer.append("SummaryStatistics:").append(endl); outBuffer.append("n: ").append(getN()).append(endl); outBuffer.append("min: ").append(getMin()).append(endl); outBuffer.append("max: ").append(getMax()).append(endl); outBuffer.append("mean: ").append(getMean()).append(endl); outBuffer.append("geometric mean: ").append(getGeometricMean()) .append(endl); outBuffer.append("variance: ").append(getVariance()).append(endl); outBuffer.append("sum of squares: ").append(getSumsq()).append(endl); outBuffer.append("standard deviation: ").append(getStandardDeviation()) .append(endl); outBuffer.append("sum of logs: ").append(getSumOfLogs()).append(endl); return outBuffer.toString(); } /** * Resets all statistics and storage */ public void clear() { this.n = 0; minImpl.clear(); maxImpl.clear(); sumImpl.clear(); sumLogImpl.clear(); sumsqImpl.clear(); geoMeanImpl.clear(); secondMoment.clear(); if (meanImpl != mean) { meanImpl.clear(); } if (varianceImpl != variance) { varianceImpl.clear(); } } /** * Returns true iff object is a * SummaryStatistics instance and all statistics have the * same values as this. * @param object the object to test equality against. * @return true if object equals this */ @Override public boolean equals(Object object) { if (object == this) { return true; } if (object instanceof SummaryStatistics == false) { return false; } SummaryStatistics stat = (SummaryStatistics)object; return Precision.equalsIncludingNaN(stat.getGeometricMean(), getGeometricMean()) && Precision.equalsIncludingNaN(stat.getMax(), getMax()) && Precision.equalsIncludingNaN(stat.getMean(), getMean()) && Precision.equalsIncludingNaN(stat.getMin(), getMin()) && Precision.equalsIncludingNaN(stat.getN(), getN()) && Precision.equalsIncludingNaN(stat.getSum(), getSum()) && Precision.equalsIncludingNaN(stat.getSumsq(), getSumsq()) && Precision.equalsIncludingNaN(stat.getVariance(), getVariance()); } /** * Returns hash code based on values of statistics * @return hash code */ @Override public int hashCode() { int result = 31 + MathUtils.hash(getGeometricMean()); result = result * 31 + MathUtils.hash(getGeometricMean()); result = result * 31 + MathUtils.hash(getMax()); result = result * 31 + MathUtils.hash(getMean()); result = result * 31 + MathUtils.hash(getMin()); result = result * 31 + MathUtils.hash(getN()); result = result * 31 + MathUtils.hash(getSum()); result = result * 31 + MathUtils.hash(getSumsq()); result = result * 31 + MathUtils.hash(getVariance()); return result; } // Getters and setters for statistics implementations /** * Returns the currently configured Sum implementation * @return the StorelessUnivariateStatistic implementing the sum * @since 1.2 */ public StorelessUnivariateStatistic getSumImpl() { return sumImpl; } /** *

* Sets the implementation for the Sum. *

*

* This method must be activated before any data has been added - i.e., * before {@link #addValue(double) addValue} has been used to add data; * otherwise an IllegalStateException will be thrown. *

* @param sumImpl the StorelessUnivariateStatistic instance to use for * computing the Sum * @throws MathIllegalStateException if data has already been added (i.e if n >0) * @since 1.2 */ public void setSumImpl(StorelessUnivariateStatistic sumImpl) throws MathIllegalStateException { checkEmpty(); this.sumImpl = sumImpl; } /** * Returns the currently configured sum of squares implementation * @return the StorelessUnivariateStatistic implementing the sum of squares * @since 1.2 */ public StorelessUnivariateStatistic getSumsqImpl() { return sumsqImpl; } /** *

* Sets the implementation for the sum of squares. *

*

* This method must be activated before any data has been added - i.e., * before {@link #addValue(double) addValue} has been used to add data; * otherwise an IllegalStateException will be thrown. *

* @param sumsqImpl the StorelessUnivariateStatistic instance to use for * computing the sum of squares * @throws MathIllegalStateException if data has already been added (i.e if n > 0) * @since 1.2 */ public void setSumsqImpl(StorelessUnivariateStatistic sumsqImpl) throws MathIllegalStateException { checkEmpty(); this.sumsqImpl = sumsqImpl; } /** * Returns the currently configured minimum implementation * @return the StorelessUnivariateStatistic implementing the minimum * @since 1.2 */ public StorelessUnivariateStatistic getMinImpl() { return minImpl; } /** *

* Sets the implementation for the minimum. *

*

* This method must be activated before any data has been added - i.e., * before {@link #addValue(double) addValue} has been used to add data; * otherwise an IllegalStateException will be thrown. *

* @param minImpl the StorelessUnivariateStatistic instance to use for * computing the minimum * @throws MathIllegalStateException if data has already been added (i.e if n > 0) * @since 1.2 */ public void setMinImpl(StorelessUnivariateStatistic minImpl) throws MathIllegalStateException { checkEmpty(); this.minImpl = minImpl; } /** * Returns the currently configured maximum implementation * @return the StorelessUnivariateStatistic implementing the maximum * @since 1.2 */ public StorelessUnivariateStatistic getMaxImpl() { return maxImpl; } /** *

* Sets the implementation for the maximum. *

*

* This method must be activated before any data has been added - i.e., * before {@link #addValue(double) addValue} has been used to add data; * otherwise an IllegalStateException will be thrown. *

* @param maxImpl the StorelessUnivariateStatistic instance to use for * computing the maximum * @throws MathIllegalStateException if data has already been added (i.e if n > 0) * @since 1.2 */ public void setMaxImpl(StorelessUnivariateStatistic maxImpl) throws MathIllegalStateException { checkEmpty(); this.maxImpl = maxImpl; } /** * Returns the currently configured sum of logs implementation * @return the StorelessUnivariateStatistic implementing the log sum * @since 1.2 */ public StorelessUnivariateStatistic getSumLogImpl() { return sumLogImpl; } /** *

* Sets the implementation for the sum of logs. *

*

* This method must be activated before any data has been added - i.e., * before {@link #addValue(double) addValue} has been used to add data; * otherwise an IllegalStateException will be thrown. *

* @param sumLogImpl the StorelessUnivariateStatistic instance to use for * computing the log sum * @throws MathIllegalStateException if data has already been added (i.e if n > 0) * @since 1.2 */ public void setSumLogImpl(StorelessUnivariateStatistic sumLogImpl) throws MathIllegalStateException { checkEmpty(); this.sumLogImpl = sumLogImpl; geoMean.setSumLogImpl(sumLogImpl); } /** * Returns the currently configured geometric mean implementation * @return the StorelessUnivariateStatistic implementing the geometric mean * @since 1.2 */ public StorelessUnivariateStatistic getGeoMeanImpl() { return geoMeanImpl; } /** *

* Sets the implementation for the geometric mean. *

*

* This method must be activated before any data has been added - i.e., * before {@link #addValue(double) addValue} has been used to add data; * otherwise an IllegalStateException will be thrown. *

* @param geoMeanImpl the StorelessUnivariateStatistic instance to use for * computing the geometric mean * @throws MathIllegalStateException if data has already been added (i.e if n > 0) * @since 1.2 */ public void setGeoMeanImpl(StorelessUnivariateStatistic geoMeanImpl) throws MathIllegalStateException { checkEmpty(); this.geoMeanImpl = geoMeanImpl; } /** * Returns the currently configured mean implementation * @return the StorelessUnivariateStatistic implementing the mean * @since 1.2 */ public StorelessUnivariateStatistic getMeanImpl() { return meanImpl; } /** *

* Sets the implementation for the mean. *

*

* This method must be activated before any data has been added - i.e., * before {@link #addValue(double) addValue} has been used to add data; * otherwise an IllegalStateException will be thrown. *

* @param meanImpl the StorelessUnivariateStatistic instance to use for * computing the mean * @throws MathIllegalStateException if data has already been added (i.e if n > 0) * @since 1.2 */ public void setMeanImpl(StorelessUnivariateStatistic meanImpl) throws MathIllegalStateException { checkEmpty(); this.meanImpl = meanImpl; } /** * Returns the currently configured variance implementation * @return the StorelessUnivariateStatistic implementing the variance * @since 1.2 */ public StorelessUnivariateStatistic getVarianceImpl() { return varianceImpl; } /** *

* Sets the implementation for the variance. *

*

* This method must be activated before any data has been added - i.e., * before {@link #addValue(double) addValue} has been used to add data; * otherwise an IllegalStateException will be thrown. *

* @param varianceImpl the StorelessUnivariateStatistic instance to use for * computing the variance * @throws MathIllegalStateException if data has already been added (i.e if n > 0) * @since 1.2 */ public void setVarianceImpl(StorelessUnivariateStatistic varianceImpl) throws MathIllegalStateException { checkEmpty(); this.varianceImpl = varianceImpl; } /** * Throws IllegalStateException if n > 0. * @throws MathIllegalStateException if data has been added */ private void checkEmpty() throws MathIllegalStateException { if (n > 0) { throw new MathIllegalStateException( LocalizedFormats.VALUES_ADDED_BEFORE_CONFIGURING_STATISTIC, n); } } /** * Returns a copy of this SummaryStatistics instance with the same internal state. * * @return a copy of this */ public SummaryStatistics copy() { SummaryStatistics result = new SummaryStatistics(); // No try-catch or advertised exception because arguments are guaranteed non-null copy(this, result); return result; } /** * Copies source to dest. *

Neither source nor dest can be null.

* * @param source SummaryStatistics to copy * @param dest SummaryStatistics to copy to * @throws NullArgumentException if either source or dest is null */ public static void copy(SummaryStatistics source, SummaryStatistics dest) throws NullArgumentException { MathUtils.checkNotNull(source); MathUtils.checkNotNull(dest); dest.maxImpl = source.maxImpl.copy(); dest.minImpl = source.minImpl.copy(); dest.sumImpl = source.sumImpl.copy(); dest.sumLogImpl = source.sumLogImpl.copy(); dest.sumsqImpl = source.sumsqImpl.copy(); dest.secondMoment = source.secondMoment.copy(); dest.n = source.n; // Keep commons-math supplied statistics with embedded moments in synch if (source.getVarianceImpl() instanceof Variance) { dest.varianceImpl = new Variance(dest.secondMoment); } else { dest.varianceImpl = source.varianceImpl.copy(); } if (source.meanImpl instanceof Mean) { dest.meanImpl = new Mean(dest.secondMoment); } else { dest.meanImpl = source.meanImpl.copy(); } if (source.getGeoMeanImpl() instanceof GeometricMean) { dest.geoMeanImpl = new GeometricMean((SumOfLogs) dest.sumLogImpl); } else { dest.geoMeanImpl = source.geoMeanImpl.copy(); } // Make sure that if stat == statImpl in source, same // holds in dest; otherwise copy stat if (source.geoMean == source.geoMeanImpl) { dest.geoMean = (GeometricMean) dest.geoMeanImpl; } else { GeometricMean.copy(source.geoMean, dest.geoMean); } if (source.max == source.maxImpl) { dest.max = (Max) dest.maxImpl; } else { Max.copy(source.max, dest.max); } if (source.mean == source.meanImpl) { dest.mean = (Mean) dest.meanImpl; } else { Mean.copy(source.mean, dest.mean); } if (source.min == source.minImpl) { dest.min = (Min) dest.minImpl; } else { Min.copy(source.min, dest.min); } if (source.sum == source.sumImpl) { dest.sum = (Sum) dest.sumImpl; } else { Sum.copy(source.sum, dest.sum); } if (source.variance == source.varianceImpl) { dest.variance = (Variance) dest.varianceImpl; } else { Variance.copy(source.variance, dest.variance); } if (source.sumLog == source.sumLogImpl) { dest.sumLog = (SumOfLogs) dest.sumLogImpl; } else { SumOfLogs.copy(source.sumLog, dest.sumLog); } if (source.sumsq == source.sumsqImpl) { dest.sumsq = (SumOfSquares) dest.sumsqImpl; } else { SumOfSquares.copy(source.sumsq, dest.sumsq); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy