All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.linear.CholeskyDecomposition Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 3.6.1
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.linear;

import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.util.FastMath;


/**
 * Calculates the Cholesky decomposition of a matrix.
 * 

The Cholesky decomposition of a real symmetric positive-definite * matrix A consists of a lower triangular matrix L with same size such * that: A = LLT. In a sense, this is the square root of A.

*

This class is based on the class with similar name from the * JAMA library, with the * following changes:

*
    *
  • a {@link #getLT() getLT} method has been added,
  • *
  • the {@code isspd} method has been removed, since the constructor of * this class throws a {@link NonPositiveDefiniteMatrixException} when a * matrix cannot be decomposed,
  • *
  • a {@link #getDeterminant() getDeterminant} method has been added,
  • *
  • the {@code solve} method has been replaced by a {@link #getSolver() * getSolver} method and the equivalent method provided by the returned * {@link DecompositionSolver}.
  • *
* * @see MathWorld * @see Wikipedia * @version $Id: CholeskyDecomposition.java 1416643 2012-12-03 19:37:14Z tn $ * @since 2.0 (changed to concrete class in 3.0) */ public class CholeskyDecomposition { /** * Default threshold above which off-diagonal elements are considered too different * and matrix not symmetric. */ public static final double DEFAULT_RELATIVE_SYMMETRY_THRESHOLD = 1.0e-15; /** * Default threshold below which diagonal elements are considered null * and matrix not positive definite. */ public static final double DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD = 1.0e-10; /** Row-oriented storage for LT matrix data. */ private double[][] lTData; /** Cached value of L. */ private RealMatrix cachedL; /** Cached value of LT. */ private RealMatrix cachedLT; /** * Calculates the Cholesky decomposition of the given matrix. *

* Calling this constructor is equivalent to call {@link * #CholeskyDecomposition(RealMatrix, double, double)} with the * thresholds set to the default values {@link * #DEFAULT_RELATIVE_SYMMETRY_THRESHOLD} and {@link * #DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD} *

* @param matrix the matrix to decompose * @throws NonSquareMatrixException if the matrix is not square. * @throws NonSymmetricMatrixException if the matrix is not symmetric. * @throws NonPositiveDefiniteMatrixException if the matrix is not * strictly positive definite. * @see #CholeskyDecomposition(RealMatrix, double, double) * @see #DEFAULT_RELATIVE_SYMMETRY_THRESHOLD * @see #DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD */ public CholeskyDecomposition(final RealMatrix matrix) { this(matrix, DEFAULT_RELATIVE_SYMMETRY_THRESHOLD, DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD); } /** * Calculates the Cholesky decomposition of the given matrix. * @param matrix the matrix to decompose * @param relativeSymmetryThreshold threshold above which off-diagonal * elements are considered too different and matrix not symmetric * @param absolutePositivityThreshold threshold below which diagonal * elements are considered null and matrix not positive definite * @throws NonSquareMatrixException if the matrix is not square. * @throws NonSymmetricMatrixException if the matrix is not symmetric. * @throws NonPositiveDefiniteMatrixException if the matrix is not * strictly positive definite. * @see #CholeskyDecomposition(RealMatrix) * @see #DEFAULT_RELATIVE_SYMMETRY_THRESHOLD * @see #DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD */ public CholeskyDecomposition(final RealMatrix matrix, final double relativeSymmetryThreshold, final double absolutePositivityThreshold) { if (!matrix.isSquare()) { throw new NonSquareMatrixException(matrix.getRowDimension(), matrix.getColumnDimension()); } final int order = matrix.getRowDimension(); lTData = matrix.getData(); cachedL = null; cachedLT = null; // check the matrix before transformation for (int i = 0; i < order; ++i) { final double[] lI = lTData[i]; // check off-diagonal elements (and reset them to 0) for (int j = i + 1; j < order; ++j) { final double[] lJ = lTData[j]; final double lIJ = lI[j]; final double lJI = lJ[i]; final double maxDelta = relativeSymmetryThreshold * FastMath.max(FastMath.abs(lIJ), FastMath.abs(lJI)); if (FastMath.abs(lIJ - lJI) > maxDelta) { throw new NonSymmetricMatrixException(i, j, relativeSymmetryThreshold); } lJ[i] = 0; } } // transform the matrix for (int i = 0; i < order; ++i) { final double[] ltI = lTData[i]; // check diagonal element if (ltI[i] <= absolutePositivityThreshold) { throw new NonPositiveDefiniteMatrixException(ltI[i], i, absolutePositivityThreshold); } ltI[i] = FastMath.sqrt(ltI[i]); final double inverse = 1.0 / ltI[i]; for (int q = order - 1; q > i; --q) { ltI[q] *= inverse; final double[] ltQ = lTData[q]; for (int p = q; p < order; ++p) { ltQ[p] -= ltI[q] * ltI[p]; } } } } /** * Returns the matrix L of the decomposition. *

L is an lower-triangular matrix

* @return the L matrix */ public RealMatrix getL() { if (cachedL == null) { cachedL = getLT().transpose(); } return cachedL; } /** * Returns the transpose of the matrix L of the decomposition. *

LT is an upper-triangular matrix

* @return the transpose of the matrix L of the decomposition */ public RealMatrix getLT() { if (cachedLT == null) { cachedLT = MatrixUtils.createRealMatrix(lTData); } // return the cached matrix return cachedLT; } /** * Return the determinant of the matrix * @return determinant of the matrix */ public double getDeterminant() { double determinant = 1.0; for (int i = 0; i < lTData.length; ++i) { double lTii = lTData[i][i]; determinant *= lTii * lTii; } return determinant; } /** * Get a solver for finding the A × X = B solution in least square sense. * @return a solver */ public DecompositionSolver getSolver() { return new Solver(lTData); } /** Specialized solver. */ private static class Solver implements DecompositionSolver { /** Row-oriented storage for LT matrix data. */ private final double[][] lTData; /** * Build a solver from decomposed matrix. * @param lTData row-oriented storage for LT matrix data */ private Solver(final double[][] lTData) { this.lTData = lTData; } /** {@inheritDoc} */ public boolean isNonSingular() { // if we get this far, the matrix was positive definite, hence non-singular return true; } /** {@inheritDoc} */ public RealVector solve(final RealVector b) { final int m = lTData.length; if (b.getDimension() != m) { throw new DimensionMismatchException(b.getDimension(), m); } final double[] x = b.toArray(); // Solve LY = b for (int j = 0; j < m; j++) { final double[] lJ = lTData[j]; x[j] /= lJ[j]; final double xJ = x[j]; for (int i = j + 1; i < m; i++) { x[i] -= xJ * lJ[i]; } } // Solve LTX = Y for (int j = m - 1; j >= 0; j--) { x[j] /= lTData[j][j]; final double xJ = x[j]; for (int i = 0; i < j; i++) { x[i] -= xJ * lTData[i][j]; } } return new ArrayRealVector(x, false); } /** {@inheritDoc} */ public RealMatrix solve(RealMatrix b) { final int m = lTData.length; if (b.getRowDimension() != m) { throw new DimensionMismatchException(b.getRowDimension(), m); } final int nColB = b.getColumnDimension(); final double[][] x = b.getData(); // Solve LY = b for (int j = 0; j < m; j++) { final double[] lJ = lTData[j]; final double lJJ = lJ[j]; final double[] xJ = x[j]; for (int k = 0; k < nColB; ++k) { xJ[k] /= lJJ; } for (int i = j + 1; i < m; i++) { final double[] xI = x[i]; final double lJI = lJ[i]; for (int k = 0; k < nColB; ++k) { xI[k] -= xJ[k] * lJI; } } } // Solve LTX = Y for (int j = m - 1; j >= 0; j--) { final double lJJ = lTData[j][j]; final double[] xJ = x[j]; for (int k = 0; k < nColB; ++k) { xJ[k] /= lJJ; } for (int i = 0; i < j; i++) { final double[] xI = x[i]; final double lIJ = lTData[i][j]; for (int k = 0; k < nColB; ++k) { xI[k] -= xJ[k] * lIJ; } } } return new Array2DRowRealMatrix(x); } /** {@inheritDoc} */ public RealMatrix getInverse() { return solve(MatrixUtils.createRealIdentityMatrix(lTData.length)); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy