All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.complex.Quaternion Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 3.6.1
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.complex;

import java.io.Serializable;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.MathUtils;
import org.apache.commons.math3.util.Precision;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.ZeroException;
import org.apache.commons.math3.exception.util.LocalizedFormats;

/**
 * This class implements 
 * quaternions (Hamilton's hypercomplex numbers).
 * 
* Instance of this class are guaranteed to be immutable. * * @since 3.1 */ public final class Quaternion implements Serializable { /** Identity quaternion. */ public static final Quaternion IDENTITY = new Quaternion(1, 0, 0, 0); /** Zero quaternion. */ public static final Quaternion ZERO = new Quaternion(0, 0, 0, 0); /** i */ public static final Quaternion I = new Quaternion(0, 1, 0, 0); /** j */ public static final Quaternion J = new Quaternion(0, 0, 1, 0); /** k */ public static final Quaternion K = new Quaternion(0, 0, 0, 1); /** Serializable version identifier. */ private static final long serialVersionUID = 20092012L; /** First component (scalar part). */ private final double q0; /** Second component (first vector part). */ private final double q1; /** Third component (second vector part). */ private final double q2; /** Fourth component (third vector part). */ private final double q3; /** * Builds a quaternion from its components. * * @param a Scalar component. * @param b First vector component. * @param c Second vector component. * @param d Third vector component. */ public Quaternion(final double a, final double b, final double c, final double d) { this.q0 = a; this.q1 = b; this.q2 = c; this.q3 = d; } /** * Builds a quaternion from scalar and vector parts. * * @param scalar Scalar part of the quaternion. * @param v Components of the vector part of the quaternion. * * @throws DimensionMismatchException if the array length is not 3. */ public Quaternion(final double scalar, final double[] v) throws DimensionMismatchException { if (v.length != 3) { throw new DimensionMismatchException(v.length, 3); } this.q0 = scalar; this.q1 = v[0]; this.q2 = v[1]; this.q3 = v[2]; } /** * Builds a pure quaternion from a vector (assuming that the scalar * part is zero). * * @param v Components of the vector part of the pure quaternion. */ public Quaternion(final double[] v) { this(0, v); } /** * Returns the conjugate quaternion of the instance. * * @return the conjugate quaternion */ public Quaternion getConjugate() { return new Quaternion(q0, -q1, -q2, -q3); } /** * Returns the Hamilton product of two quaternions. * * @param q1 First quaternion. * @param q2 Second quaternion. * @return the product {@code q1} and {@code q2}, in that order. */ public static Quaternion multiply(final Quaternion q1, final Quaternion q2) { // Components of the first quaternion. final double q1a = q1.getQ0(); final double q1b = q1.getQ1(); final double q1c = q1.getQ2(); final double q1d = q1.getQ3(); // Components of the second quaternion. final double q2a = q2.getQ0(); final double q2b = q2.getQ1(); final double q2c = q2.getQ2(); final double q2d = q2.getQ3(); // Components of the product. final double w = q1a * q2a - q1b * q2b - q1c * q2c - q1d * q2d; final double x = q1a * q2b + q1b * q2a + q1c * q2d - q1d * q2c; final double y = q1a * q2c - q1b * q2d + q1c * q2a + q1d * q2b; final double z = q1a * q2d + q1b * q2c - q1c * q2b + q1d * q2a; return new Quaternion(w, x, y, z); } /** * Returns the Hamilton product of the instance by a quaternion. * * @param q Quaternion. * @return the product of this instance with {@code q}, in that order. */ public Quaternion multiply(final Quaternion q) { return multiply(this, q); } /** * Computes the sum of two quaternions. * * @param q1 Quaternion. * @param q2 Quaternion. * @return the sum of {@code q1} and {@code q2}. */ public static Quaternion add(final Quaternion q1, final Quaternion q2) { return new Quaternion(q1.getQ0() + q2.getQ0(), q1.getQ1() + q2.getQ1(), q1.getQ2() + q2.getQ2(), q1.getQ3() + q2.getQ3()); } /** * Computes the sum of the instance and another quaternion. * * @param q Quaternion. * @return the sum of this instance and {@code q} */ public Quaternion add(final Quaternion q) { return add(this, q); } /** * Subtracts two quaternions. * * @param q1 First Quaternion. * @param q2 Second quaternion. * @return the difference between {@code q1} and {@code q2}. */ public static Quaternion subtract(final Quaternion q1, final Quaternion q2) { return new Quaternion(q1.getQ0() - q2.getQ0(), q1.getQ1() - q2.getQ1(), q1.getQ2() - q2.getQ2(), q1.getQ3() - q2.getQ3()); } /** * Subtracts a quaternion from the instance. * * @param q Quaternion. * @return the difference between this instance and {@code q}. */ public Quaternion subtract(final Quaternion q) { return subtract(this, q); } /** * Computes the dot-product of two quaternions. * * @param q1 Quaternion. * @param q2 Quaternion. * @return the dot product of {@code q1} and {@code q2}. */ public static double dotProduct(final Quaternion q1, final Quaternion q2) { return q1.getQ0() * q2.getQ0() + q1.getQ1() * q2.getQ1() + q1.getQ2() * q2.getQ2() + q1.getQ3() * q2.getQ3(); } /** * Computes the dot-product of the instance by a quaternion. * * @param q Quaternion. * @return the dot product of this instance and {@code q}. */ public double dotProduct(final Quaternion q) { return dotProduct(this, q); } /** * Computes the norm of the quaternion. * * @return the norm. */ public double getNorm() { return FastMath.sqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3); } /** * Computes the normalized quaternion (the versor of the instance). * The norm of the quaternion must not be zero. * * @return a normalized quaternion. * @throws ZeroException if the norm of the quaternion is zero. */ public Quaternion normalize() { final double norm = getNorm(); if (norm < Precision.SAFE_MIN) { throw new ZeroException(LocalizedFormats.NORM, norm); } return new Quaternion(q0 / norm, q1 / norm, q2 / norm, q3 / norm); } /** * {@inheritDoc} */ @Override public boolean equals(Object other) { if (this == other) { return true; } if (other instanceof Quaternion) { final Quaternion q = (Quaternion) other; return q0 == q.getQ0() && q1 == q.getQ1() && q2 == q.getQ2() && q3 == q.getQ3(); } return false; } /** * {@inheritDoc} */ @Override public int hashCode() { // "Effective Java" (second edition, p. 47). int result = 17; for (double comp : new double[] { q0, q1, q2, q3 }) { final int c = MathUtils.hash(comp); result = 31 * result + c; } return result; } /** * Checks whether this instance is equal to another quaternion * within a given tolerance. * * @param q Quaternion with which to compare the current quaternion. * @param eps Tolerance. * @return {@code true} if the each of the components are equal * within the allowed absolute error. */ public boolean equals(final Quaternion q, final double eps) { return Precision.equals(q0, q.getQ0(), eps) && Precision.equals(q1, q.getQ1(), eps) && Precision.equals(q2, q.getQ2(), eps) && Precision.equals(q3, q.getQ3(), eps); } /** * Checks whether the instance is a unit quaternion within a given * tolerance. * * @param eps Tolerance (absolute error). * @return {@code true} if the norm is 1 within the given tolerance, * {@code false} otherwise */ public boolean isUnitQuaternion(double eps) { return Precision.equals(getNorm(), 1d, eps); } /** * Checks whether the instance is a pure quaternion within a given * tolerance. * * @param eps Tolerance (absolute error). * @return {@code true} if the scalar part of the quaternion is zero. */ public boolean isPureQuaternion(double eps) { return FastMath.abs(getQ0()) <= eps; } /** * Returns the polar form of the quaternion. * * @return the unit quaternion with positive scalar part. */ public Quaternion getPositivePolarForm() { if (getQ0() < 0) { final Quaternion unitQ = normalize(); // The quaternion of rotation (normalized quaternion) q and -q // are equivalent (i.e. represent the same rotation). return new Quaternion(-unitQ.getQ0(), -unitQ.getQ1(), -unitQ.getQ2(), -unitQ.getQ3()); } else { return this.normalize(); } } /** * Returns the inverse of this instance. * The norm of the quaternion must not be zero. * * @return the inverse. * @throws ZeroException if the norm (squared) of the quaternion is zero. */ public Quaternion getInverse() { final double squareNorm = q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3; if (squareNorm < Precision.SAFE_MIN) { throw new ZeroException(LocalizedFormats.NORM, squareNorm); } return new Quaternion(q0 / squareNorm, -q1 / squareNorm, -q2 / squareNorm, -q3 / squareNorm); } /** * Gets the first component of the quaternion (scalar part). * * @return the scalar part. */ public double getQ0() { return q0; } /** * Gets the second component of the quaternion (first component * of the vector part). * * @return the first component of the vector part. */ public double getQ1() { return q1; } /** * Gets the third component of the quaternion (second component * of the vector part). * * @return the second component of the vector part. */ public double getQ2() { return q2; } /** * Gets the fourth component of the quaternion (third component * of the vector part). * * @return the third component of the vector part. */ public double getQ3() { return q3; } /** * Gets the scalar part of the quaternion. * * @return the scalar part. * @see #getQ0() */ public double getScalarPart() { return getQ0(); } /** * Gets the three components of the vector part of the quaternion. * * @return the vector part. * @see #getQ1() * @see #getQ2() * @see #getQ3() */ public double[] getVectorPart() { return new double[] { getQ1(), getQ2(), getQ3() }; } /** * Multiplies the instance by a scalar. * * @param alpha Scalar factor. * @return a scaled quaternion. */ public Quaternion multiply(final double alpha) { return new Quaternion(alpha * q0, alpha * q1, alpha * q2, alpha * q3); } /** * {@inheritDoc} */ @Override public String toString() { final String sp = " "; final StringBuilder s = new StringBuilder(); s.append("[") .append(q0).append(sp) .append(q1).append(sp) .append(q2).append(sp) .append(q3) .append("]"); return s.toString(); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy