All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.distribution.NormalDistribution Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 3.6.1
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.distribution;

import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.OutOfRangeException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.Well19937c;
import org.apache.commons.math3.special.Erf;
import org.apache.commons.math3.util.FastMath;

/**
 * Implementation of the normal (gaussian) distribution.
 *
 * @see Normal distribution (Wikipedia)
 * @see Normal distribution (MathWorld)
 */
public class NormalDistribution extends AbstractRealDistribution {
    /**
     * Default inverse cumulative probability accuracy.
     * @since 2.1
     */
    public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
    /** Serializable version identifier. */
    private static final long serialVersionUID = 8589540077390120676L;
    /** √(2) */
    private static final double SQRT2 = FastMath.sqrt(2.0);
    /** Mean of this distribution. */
    private final double mean;
    /** Standard deviation of this distribution. */
    private final double standardDeviation;
    /** The value of {@code log(sd) + 0.5*log(2*pi)} stored for faster computation. */
    private final double logStandardDeviationPlusHalfLog2Pi;
    /** Inverse cumulative probability accuracy. */
    private final double solverAbsoluteAccuracy;

    /**
     * Create a normal distribution with mean equal to zero and standard
     * deviation equal to one.
     * 

* Note: this constructor will implicitly create an instance of * {@link Well19937c} as random generator to be used for sampling only (see * {@link #sample()} and {@link #sample(int)}). In case no sampling is * needed for the created distribution, it is advised to pass {@code null} * as random generator via the appropriate constructors to avoid the * additional initialisation overhead. */ public NormalDistribution() { this(0, 1); } /** * Create a normal distribution using the given mean and standard deviation. *

* Note: this constructor will implicitly create an instance of * {@link Well19937c} as random generator to be used for sampling only (see * {@link #sample()} and {@link #sample(int)}). In case no sampling is * needed for the created distribution, it is advised to pass {@code null} * as random generator via the appropriate constructors to avoid the * additional initialisation overhead. * * @param mean Mean for this distribution. * @param sd Standard deviation for this distribution. * @throws NotStrictlyPositiveException if {@code sd <= 0}. */ public NormalDistribution(double mean, double sd) throws NotStrictlyPositiveException { this(mean, sd, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); } /** * Create a normal distribution using the given mean, standard deviation and * inverse cumulative distribution accuracy. *

* Note: this constructor will implicitly create an instance of * {@link Well19937c} as random generator to be used for sampling only (see * {@link #sample()} and {@link #sample(int)}). In case no sampling is * needed for the created distribution, it is advised to pass {@code null} * as random generator via the appropriate constructors to avoid the * additional initialisation overhead. * * @param mean Mean for this distribution. * @param sd Standard deviation for this distribution. * @param inverseCumAccuracy Inverse cumulative probability accuracy. * @throws NotStrictlyPositiveException if {@code sd <= 0}. * @since 2.1 */ public NormalDistribution(double mean, double sd, double inverseCumAccuracy) throws NotStrictlyPositiveException { this(new Well19937c(), mean, sd, inverseCumAccuracy); } /** * Creates a normal distribution. * * @param rng Random number generator. * @param mean Mean for this distribution. * @param sd Standard deviation for this distribution. * @throws NotStrictlyPositiveException if {@code sd <= 0}. * @since 3.3 */ public NormalDistribution(RandomGenerator rng, double mean, double sd) throws NotStrictlyPositiveException { this(rng, mean, sd, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); } /** * Creates a normal distribution. * * @param rng Random number generator. * @param mean Mean for this distribution. * @param sd Standard deviation for this distribution. * @param inverseCumAccuracy Inverse cumulative probability accuracy. * @throws NotStrictlyPositiveException if {@code sd <= 0}. * @since 3.1 */ public NormalDistribution(RandomGenerator rng, double mean, double sd, double inverseCumAccuracy) throws NotStrictlyPositiveException { super(rng); if (sd <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.STANDARD_DEVIATION, sd); } this.mean = mean; standardDeviation = sd; logStandardDeviationPlusHalfLog2Pi = FastMath.log(sd) + 0.5 * FastMath.log(2 * FastMath.PI); solverAbsoluteAccuracy = inverseCumAccuracy; } /** * Access the mean. * * @return the mean for this distribution. */ public double getMean() { return mean; } /** * Access the standard deviation. * * @return the standard deviation for this distribution. */ public double getStandardDeviation() { return standardDeviation; } /** {@inheritDoc} */ public double density(double x) { return FastMath.exp(logDensity(x)); } /** {@inheritDoc} */ @Override public double logDensity(double x) { final double x0 = x - mean; final double x1 = x0 / standardDeviation; return -0.5 * x1 * x1 - logStandardDeviationPlusHalfLog2Pi; } /** * {@inheritDoc} * * If {@code x} is more than 40 standard deviations from the mean, 0 or 1 * is returned, as in these cases the actual value is within * {@code Double.MIN_VALUE} of 0 or 1. */ public double cumulativeProbability(double x) { final double dev = x - mean; if (FastMath.abs(dev) > 40 * standardDeviation) { return dev < 0 ? 0.0d : 1.0d; } return 0.5 * (1 + Erf.erf(dev / (standardDeviation * SQRT2))); } /** {@inheritDoc} * @since 3.2 */ @Override public double inverseCumulativeProbability(final double p) throws OutOfRangeException { if (p < 0.0 || p > 1.0) { throw new OutOfRangeException(p, 0, 1); } return mean + standardDeviation * SQRT2 * Erf.erfInv(2 * p - 1); } /** * {@inheritDoc} * * @deprecated See {@link RealDistribution#cumulativeProbability(double,double)} */ @Override@Deprecated public double cumulativeProbability(double x0, double x1) throws NumberIsTooLargeException { return probability(x0, x1); } /** {@inheritDoc} */ @Override public double probability(double x0, double x1) throws NumberIsTooLargeException { if (x0 > x1) { throw new NumberIsTooLargeException(LocalizedFormats.LOWER_ENDPOINT_ABOVE_UPPER_ENDPOINT, x0, x1, true); } final double denom = standardDeviation * SQRT2; final double v0 = (x0 - mean) / denom; final double v1 = (x1 - mean) / denom; return 0.5 * Erf.erf(v0, v1); } /** {@inheritDoc} */ @Override protected double getSolverAbsoluteAccuracy() { return solverAbsoluteAccuracy; } /** * {@inheritDoc} * * For mean parameter {@code mu}, the mean is {@code mu}. */ public double getNumericalMean() { return getMean(); } /** * {@inheritDoc} * * For standard deviation parameter {@code s}, the variance is {@code s^2}. */ public double getNumericalVariance() { final double s = getStandardDeviation(); return s * s; } /** * {@inheritDoc} * * The lower bound of the support is always negative infinity * no matter the parameters. * * @return lower bound of the support (always * {@code Double.NEGATIVE_INFINITY}) */ public double getSupportLowerBound() { return Double.NEGATIVE_INFINITY; } /** * {@inheritDoc} * * The upper bound of the support is always positive infinity * no matter the parameters. * * @return upper bound of the support (always * {@code Double.POSITIVE_INFINITY}) */ public double getSupportUpperBound() { return Double.POSITIVE_INFINITY; } /** {@inheritDoc} */ public boolean isSupportLowerBoundInclusive() { return false; } /** {@inheritDoc} */ public boolean isSupportUpperBoundInclusive() { return false; } /** * {@inheritDoc} * * The support of this distribution is connected. * * @return {@code true} */ public boolean isSupportConnected() { return true; } /** {@inheritDoc} */ @Override public double sample() { return standardDeviation * random.nextGaussian() + mean; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy