All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.geometry.enclosing.WelzlEncloser Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 3.6.1
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.geometry.enclosing;

import java.util.ArrayList;
import java.util.List;

import org.apache.commons.math3.exception.MathInternalError;
import org.apache.commons.math3.geometry.Point;
import org.apache.commons.math3.geometry.Space;

/** Class implementing Emo Welzl algorithm to find the smallest enclosing ball in linear time.
 * 

* The class implements the algorithm described in paper Smallest * Enclosing Disks (Balls and Ellipsoids) by Emo Welzl, Lecture Notes in Computer Science * 555 (1991) 359-370. The pivoting improvement published in the paper Fast and * Robust Smallest Enclosing Balls, by Bernd Gärtner and further modified in * paper * Efficient Computation of Smallest Enclosing Balls in Three Dimensions by Linus Källberg * to avoid performing local copies of data have been included. *

* @param Space type. * @param

Point type. * @since 3.3 */ public class WelzlEncloser> implements Encloser { /** Tolerance below which points are consider to be identical. */ private final double tolerance; /** Generator for balls on support. */ private final SupportBallGenerator generator; /** Simple constructor. * @param tolerance below which points are consider to be identical * @param generator generator for balls on support */ public WelzlEncloser(final double tolerance, final SupportBallGenerator generator) { this.tolerance = tolerance; this.generator = generator; } /** {@inheritDoc} */ public EnclosingBall enclose(final Iterable

points) { if (points == null || !points.iterator().hasNext()) { // return an empty ball return generator.ballOnSupport(new ArrayList

()); } // Emo Welzl algorithm with Bernd Gärtner and Linus Källberg improvements return pivotingBall(points); } /** Compute enclosing ball using Gärtner's pivoting heuristic. * @param points points to be enclosed * @return enclosing ball */ private EnclosingBall pivotingBall(final Iterable

points) { final P first = points.iterator().next(); final List

extreme = new ArrayList

(first.getSpace().getDimension() + 1); final List

support = new ArrayList

(first.getSpace().getDimension() + 1); // start with only first point selected as a candidate support extreme.add(first); EnclosingBall ball = moveToFrontBall(extreme, extreme.size(), support); while (true) { // select the point farthest to current ball final P farthest = selectFarthest(points, ball); if (ball.contains(farthest, tolerance)) { // we have found a ball containing all points return ball; } // recurse search, restricted to the small subset containing support and farthest point support.clear(); support.add(farthest); EnclosingBall savedBall = ball; ball = moveToFrontBall(extreme, extreme.size(), support); if (ball.getRadius() < savedBall.getRadius()) { // this should never happen throw new MathInternalError(); } // it was an interesting point, move it to the front // according to Gärtner's heuristic extreme.add(0, farthest); // prune the least interesting points extreme.subList(ball.getSupportSize(), extreme.size()).clear(); } } /** Compute enclosing ball using Welzl's move to front heuristic. * @param extreme subset of extreme points * @param nbExtreme number of extreme points to consider * @param support points that must belong to the ball support * @return enclosing ball, for the extreme subset only */ private EnclosingBall moveToFrontBall(final List

extreme, final int nbExtreme, final List

support) { // create a new ball on the prescribed support EnclosingBall ball = generator.ballOnSupport(support); if (ball.getSupportSize() <= ball.getCenter().getSpace().getDimension()) { for (int i = 0; i < nbExtreme; ++i) { final P pi = extreme.get(i); if (!ball.contains(pi, tolerance)) { // we have found an outside point, // enlarge the ball by adding it to the support support.add(pi); ball = moveToFrontBall(extreme, i, support); support.remove(support.size() - 1); // it was an interesting point, move it to the front // according to Welzl's heuristic for (int j = i; j > 0; --j) { extreme.set(j, extreme.get(j - 1)); } extreme.set(0, pi); } } } return ball; } /** Select the point farthest to the current ball. * @param points points to be enclosed * @param ball current ball * @return farthest point */ public P selectFarthest(final Iterable

points, final EnclosingBall ball) { final P center = ball.getCenter(); P farthest = null; double dMax = -1.0; for (final P point : points) { final double d = point.distance(center); if (d > dMax) { farthest = point; dMax = d; } } return farthest; } }