All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.random.BitsStreamGenerator Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 3.6.1
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.random;

import java.io.Serializable;

import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.util.FastMath;

/** Base class for random number generators that generates bits streams.
 *
 * @since 2.0
 */
public abstract class BitsStreamGenerator
    implements RandomGenerator,
               Serializable {
    /** Serializable version identifier */
    private static final long serialVersionUID = 20130104L;
    /** Next gaussian. */
    private double nextGaussian;

    /**
     * Creates a new random number generator.
     */
    public BitsStreamGenerator() {
        nextGaussian = Double.NaN;
    }

    /** {@inheritDoc} */
    public abstract void setSeed(int seed);

    /** {@inheritDoc} */
    public abstract void setSeed(int[] seed);

    /** {@inheritDoc} */
    public abstract void setSeed(long seed);

    /** Generate next pseudorandom number.
     * 

This method is the core generation algorithm. It is used by all the * public generation methods for the various primitive types {@link * #nextBoolean()}, {@link #nextBytes(byte[])}, {@link #nextDouble()}, * {@link #nextFloat()}, {@link #nextGaussian()}, {@link #nextInt()}, * {@link #next(int)} and {@link #nextLong()}.

* @param bits number of random bits to produce * @return random bits generated */ protected abstract int next(int bits); /** {@inheritDoc} */ public boolean nextBoolean() { return next(1) != 0; } /** {@inheritDoc} */ public void nextBytes(byte[] bytes) { int i = 0; final int iEnd = bytes.length - 3; while (i < iEnd) { final int random = next(32); bytes[i] = (byte) (random & 0xff); bytes[i + 1] = (byte) ((random >> 8) & 0xff); bytes[i + 2] = (byte) ((random >> 16) & 0xff); bytes[i + 3] = (byte) ((random >> 24) & 0xff); i += 4; } int random = next(32); while (i < bytes.length) { bytes[i++] = (byte) (random & 0xff); random >>= 8; } } /** {@inheritDoc} */ public double nextDouble() { final long high = ((long) next(26)) << 26; final int low = next(26); return (high | low) * 0x1.0p-52d; } /** {@inheritDoc} */ public float nextFloat() { return next(23) * 0x1.0p-23f; } /** {@inheritDoc} */ public double nextGaussian() { final double random; if (Double.isNaN(nextGaussian)) { // generate a new pair of gaussian numbers final double x = nextDouble(); final double y = nextDouble(); final double alpha = 2 * FastMath.PI * x; final double r = FastMath.sqrt(-2 * FastMath.log(y)); random = r * FastMath.cos(alpha); nextGaussian = r * FastMath.sin(alpha); } else { // use the second element of the pair already generated random = nextGaussian; nextGaussian = Double.NaN; } return random; } /** {@inheritDoc} */ public int nextInt() { return next(32); } /** * {@inheritDoc} *

This default implementation is copied from Apache Harmony * java.util.Random (r929253).

* *

Implementation notes:

    *
  • If n is a power of 2, this method returns * {@code (int) ((n * (long) next(31)) >> 31)}.
  • * *
  • If n is not a power of 2, what is returned is {@code next(31) % n} * with {@code next(31)} values rejected (i.e. regenerated) until a * value that is larger than the remainder of {@code Integer.MAX_VALUE / n} * is generated. Rejection of this initial segment is necessary to ensure * a uniform distribution.

*/ public int nextInt(int n) throws IllegalArgumentException { if (n > 0) { if ((n & -n) == n) { return (int) ((n * (long) next(31)) >> 31); } int bits; int val; do { bits = next(31); val = bits % n; } while (bits - val + (n - 1) < 0); return val; } throw new NotStrictlyPositiveException(n); } /** {@inheritDoc} */ public long nextLong() { final long high = ((long) next(32)) << 32; final long low = ((long) next(32)) & 0xffffffffL; return high | low; } /** * Returns a pseudorandom, uniformly distributed {@code long} value * between 0 (inclusive) and the specified value (exclusive), drawn from * this random number generator's sequence. * * @param n the bound on the random number to be returned. Must be * positive. * @return a pseudorandom, uniformly distributed {@code long} * value between 0 (inclusive) and n (exclusive). * @throws IllegalArgumentException if n is not positive. */ public long nextLong(long n) throws IllegalArgumentException { if (n > 0) { long bits; long val; do { bits = ((long) next(31)) << 32; bits |= ((long) next(32)) & 0xffffffffL; val = bits % n; } while (bits - val + (n - 1) < 0); return val; } throw new NotStrictlyPositiveException(n); } /** * Clears the cache used by the default implementation of * {@link #nextGaussian}. */ public void clear() { nextGaussian = Double.NaN; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy