All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.RealFieldElement Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3;

import org.apache.commons.math3.exception.DimensionMismatchException;

/**
 * Interface representing a real
 * field.
 * @param  the type of the field elements
 * @see FieldElement
 * @since 3.2
 */
public interface RealFieldElement extends FieldElement {

    /** Get the real value of the number.
     * @return real value
     */
    double getReal();

    /** '+' operator.
     * @param a right hand side parameter of the operator
     * @return this+a
     */
    T add(double a);

    /** '-' operator.
     * @param a right hand side parameter of the operator
     * @return this-a
     */
    T subtract(double a);

    /** '×' operator.
     * @param a right hand side parameter of the operator
     * @return this×a
     */
    T multiply(double a);

    /** '÷' operator.
     * @param a right hand side parameter of the operator
     * @return this÷a
     */
    T divide(double a);

    /** IEEE remainder operator.
     * @param a right hand side parameter of the operator
     * @return this - n × a where n is the closest integer to this/a
     * (the even integer is chosen for n if this/a is halfway between two integers)
     */
    T remainder(double a);

    /** IEEE remainder operator.
     * @param a right hand side parameter of the operator
     * @return this - n × a where n is the closest integer to this/a
     * (the even integer is chosen for n if this/a is halfway between two integers)
     * @exception DimensionMismatchException if number of free parameters or orders are inconsistent
     */
    T remainder(T a)
        throws DimensionMismatchException;

    /** absolute value.
     * @return abs(this)
     */
    T abs();

    /** Get the smallest whole number larger than instance.
     * @return ceil(this)
     */
    T ceil();

    /** Get the largest whole number smaller than instance.
     * @return floor(this)
     */
    T floor();

    /** Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers.
     * @return a double number r such that r is an integer r - 0.5 ≤ this ≤ r + 0.5
     */
    T rint();

    /** Get the closest long to instance value.
     * @return closest long to {@link #getReal()}
     */
    long round();

    /** Compute the signum of the instance.
     * The signum is -1 for negative numbers, +1 for positive numbers and 0 otherwise
     * @return -1.0, -0.0, +0.0, +1.0 or NaN depending on sign of a
     */
    T signum();

    /**
     * Returns the instance with the sign of the argument.
     * A NaN {@code sign} argument is treated as positive.
     *
     * @param sign the sign for the returned value
     * @return the instance with the same sign as the {@code sign} argument
     */
    T copySign(T sign);

    /**
     * Returns the instance with the sign of the argument.
     * A NaN {@code sign} argument is treated as positive.
     *
     * @param sign the sign for the returned value
     * @return the instance with the same sign as the {@code sign} argument
     */
    T copySign(double sign);

    /**
     * Multiply the instance by a power of 2.
     * @param n power of 2
     * @return this × 2n
     */
    T scalb(int n);

    /**
     * Returns the hypotenuse of a triangle with sides {@code this} and {@code y}
     * - sqrt(this2 +y2)
     * avoiding intermediate overflow or underflow.
     *
     * 
    *
  • If either argument is infinite, then the result is positive infinity.
  • *
  • else, if either argument is NaN then the result is NaN.
  • *
* * @param y a value * @return sqrt(this2 +y2) * @exception DimensionMismatchException if number of free parameters or orders are inconsistent */ T hypot(T y) throws DimensionMismatchException; /** {@inheritDoc} */ T reciprocal(); /** Square root. * @return square root of the instance */ T sqrt(); /** Cubic root. * @return cubic root of the instance */ T cbrt(); /** Nth root. * @param n order of the root * @return nth root of the instance */ T rootN(int n); /** Power operation. * @param p power to apply * @return thisp */ T pow(double p); /** Integer power operation. * @param n power to apply * @return thisn */ T pow(int n); /** Power operation. * @param e exponent * @return thise * @exception DimensionMismatchException if number of free parameters or orders are inconsistent */ T pow(T e) throws DimensionMismatchException; /** Exponential. * @return exponential of the instance */ T exp(); /** Exponential minus 1. * @return exponential minus one of the instance */ T expm1(); /** Natural logarithm. * @return logarithm of the instance */ T log(); /** Shifted natural logarithm. * @return logarithm of one plus the instance */ T log1p(); // TODO: add this method in 4.0, as it is not possible to do it in 3.2 // due to incompatibility of the return type in the Dfp class // /** Base 10 logarithm. // * @return base 10 logarithm of the instance // */ // T log10(); /** Cosine operation. * @return cos(this) */ T cos(); /** Sine operation. * @return sin(this) */ T sin(); /** Tangent operation. * @return tan(this) */ T tan(); /** Arc cosine operation. * @return acos(this) */ T acos(); /** Arc sine operation. * @return asin(this) */ T asin(); /** Arc tangent operation. * @return atan(this) */ T atan(); /** Two arguments arc tangent operation. * @param x second argument of the arc tangent * @return atan2(this, x) * @exception DimensionMismatchException if number of free parameters or orders are inconsistent */ T atan2(T x) throws DimensionMismatchException; /** Hyperbolic cosine operation. * @return cosh(this) */ T cosh(); /** Hyperbolic sine operation. * @return sinh(this) */ T sinh(); /** Hyperbolic tangent operation. * @return tanh(this) */ T tanh(); /** Inverse hyperbolic cosine operation. * @return acosh(this) */ T acosh(); /** Inverse hyperbolic sine operation. * @return asin(this) */ T asinh(); /** Inverse hyperbolic tangent operation. * @return atanh(this) */ T atanh(); /** * Compute a linear combination. * @param a Factors. * @param b Factors. * @return Σi ai bi. * @throws DimensionMismatchException if arrays dimensions don't match * @since 3.2 */ T linearCombination(T[] a, T[] b) throws DimensionMismatchException; /** * Compute a linear combination. * @param a Factors. * @param b Factors. * @return Σi ai bi. * @throws DimensionMismatchException if arrays dimensions don't match * @since 3.2 */ T linearCombination(double[] a, T[] b) throws DimensionMismatchException; /** * Compute a linear combination. * @param a1 first factor of the first term * @param b1 second factor of the first term * @param a2 first factor of the second term * @param b2 second factor of the second term * @return a1×b1 + * a2×b2 * @see #linearCombination(Object, Object, Object, Object, Object, Object) * @see #linearCombination(Object, Object, Object, Object, Object, Object, Object, Object) * @since 3.2 */ T linearCombination(T a1, T b1, T a2, T b2); /** * Compute a linear combination. * @param a1 first factor of the first term * @param b1 second factor of the first term * @param a2 first factor of the second term * @param b2 second factor of the second term * @return a1×b1 + * a2×b2 * @see #linearCombination(double, Object, double, Object, double, Object) * @see #linearCombination(double, Object, double, Object, double, Object, double, Object) * @since 3.2 */ T linearCombination(double a1, T b1, double a2, T b2); /** * Compute a linear combination. * @param a1 first factor of the first term * @param b1 second factor of the first term * @param a2 first factor of the second term * @param b2 second factor of the second term * @param a3 first factor of the third term * @param b3 second factor of the third term * @return a1×b1 + * a2×b2 + a3×b3 * @see #linearCombination(Object, Object, Object, Object) * @see #linearCombination(Object, Object, Object, Object, Object, Object, Object, Object) * @since 3.2 */ T linearCombination(T a1, T b1, T a2, T b2, T a3, T b3); /** * Compute a linear combination. * @param a1 first factor of the first term * @param b1 second factor of the first term * @param a2 first factor of the second term * @param b2 second factor of the second term * @param a3 first factor of the third term * @param b3 second factor of the third term * @return a1×b1 + * a2×b2 + a3×b3 * @see #linearCombination(double, Object, double, Object) * @see #linearCombination(double, Object, double, Object, double, Object, double, Object) * @since 3.2 */ T linearCombination(double a1, T b1, double a2, T b2, double a3, T b3); /** * Compute a linear combination. * @param a1 first factor of the first term * @param b1 second factor of the first term * @param a2 first factor of the second term * @param b2 second factor of the second term * @param a3 first factor of the third term * @param b3 second factor of the third term * @param a4 first factor of the third term * @param b4 second factor of the third term * @return a1×b1 + * a2×b2 + a3×b3 + * a4×b4 * @see #linearCombination(Object, Object, Object, Object) * @see #linearCombination(Object, Object, Object, Object, Object, Object) * @since 3.2 */ T linearCombination(T a1, T b1, T a2, T b2, T a3, T b3, T a4, T b4); /** * Compute a linear combination. * @param a1 first factor of the first term * @param b1 second factor of the first term * @param a2 first factor of the second term * @param b2 second factor of the second term * @param a3 first factor of the third term * @param b3 second factor of the third term * @param a4 first factor of the third term * @param b4 second factor of the third term * @return a1×b1 + * a2×b2 + a3×b3 + * a4×b4 * @see #linearCombination(double, Object, double, Object) * @see #linearCombination(double, Object, double, Object, double, Object) * @since 3.2 */ T linearCombination(double a1, T b1, double a2, T b2, double a3, T b3, double a4, T b4); }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy