All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.analysis.function.Gaussian Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.analysis.function;

import java.util.Arrays;

import org.apache.commons.math3.analysis.FunctionUtils;
import org.apache.commons.math3.analysis.UnivariateFunction;
import org.apache.commons.math3.analysis.DifferentiableUnivariateFunction;
import org.apache.commons.math3.analysis.ParametricUnivariateFunction;
import org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.NullArgumentException;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.Precision;

/**
 * 
 *  Gaussian function.
 *
 * @since 3.0
 */
public class Gaussian implements UnivariateDifferentiableFunction, DifferentiableUnivariateFunction {
    /** Mean. */
    private final double mean;
    /** Inverse of the standard deviation. */
    private final double is;
    /** Inverse of twice the square of the standard deviation. */
    private final double i2s2;
    /** Normalization factor. */
    private final double norm;

    /**
     * Gaussian with given normalization factor, mean and standard deviation.
     *
     * @param norm Normalization factor.
     * @param mean Mean.
     * @param sigma Standard deviation.
     * @throws NotStrictlyPositiveException if {@code sigma <= 0}.
     */
    public Gaussian(double norm,
                    double mean,
                    double sigma)
        throws NotStrictlyPositiveException {
        if (sigma <= 0) {
            throw new NotStrictlyPositiveException(sigma);
        }

        this.norm = norm;
        this.mean = mean;
        this.is   = 1 / sigma;
        this.i2s2 = 0.5 * is * is;
    }

    /**
     * Normalized gaussian with given mean and standard deviation.
     *
     * @param mean Mean.
     * @param sigma Standard deviation.
     * @throws NotStrictlyPositiveException if {@code sigma <= 0}.
     */
    public Gaussian(double mean,
                    double sigma)
        throws NotStrictlyPositiveException {
        this(1 / (sigma * FastMath.sqrt(2 * Math.PI)), mean, sigma);
    }

    /**
     * Normalized gaussian with zero mean and unit standard deviation.
     */
    public Gaussian() {
        this(0, 1);
    }

    /** {@inheritDoc} */
    public double value(double x) {
        return value(x - mean, norm, i2s2);
    }

    /** {@inheritDoc}
     * @deprecated as of 3.1, replaced by {@link #value(DerivativeStructure)}
     */
    @Deprecated
    public UnivariateFunction derivative() {
        return FunctionUtils.toDifferentiableUnivariateFunction(this).derivative();
    }

    /**
     * Parametric function where the input array contains the parameters of
     * the Gaussian, ordered as follows:
     * 
    *
  • Norm
  • *
  • Mean
  • *
  • Standard deviation
  • *
*/ public static class Parametric implements ParametricUnivariateFunction { /** * Computes the value of the Gaussian at {@code x}. * * @param x Value for which the function must be computed. * @param param Values of norm, mean and standard deviation. * @return the value of the function. * @throws NullArgumentException if {@code param} is {@code null}. * @throws DimensionMismatchException if the size of {@code param} is * not 3. * @throws NotStrictlyPositiveException if {@code param[2]} is negative. */ public double value(double x, double ... param) throws NullArgumentException, DimensionMismatchException, NotStrictlyPositiveException { validateParameters(param); final double diff = x - param[1]; final double i2s2 = 1 / (2 * param[2] * param[2]); return Gaussian.value(diff, param[0], i2s2); } /** * Computes the value of the gradient at {@code x}. * The components of the gradient vector are the partial * derivatives of the function with respect to each of the * parameters (norm, mean and standard deviation). * * @param x Value at which the gradient must be computed. * @param param Values of norm, mean and standard deviation. * @return the gradient vector at {@code x}. * @throws NullArgumentException if {@code param} is {@code null}. * @throws DimensionMismatchException if the size of {@code param} is * not 3. * @throws NotStrictlyPositiveException if {@code param[2]} is negative. */ public double[] gradient(double x, double ... param) throws NullArgumentException, DimensionMismatchException, NotStrictlyPositiveException { validateParameters(param); final double norm = param[0]; final double diff = x - param[1]; final double sigma = param[2]; final double i2s2 = 1 / (2 * sigma * sigma); final double n = Gaussian.value(diff, 1, i2s2); final double m = norm * n * 2 * i2s2 * diff; final double s = m * diff / sigma; return new double[] { n, m, s }; } /** * Validates parameters to ensure they are appropriate for the evaluation of * the {@link #value(double,double[])} and {@link #gradient(double,double[])} * methods. * * @param param Values of norm, mean and standard deviation. * @throws NullArgumentException if {@code param} is {@code null}. * @throws DimensionMismatchException if the size of {@code param} is * not 3. * @throws NotStrictlyPositiveException if {@code param[2]} is negative. */ private void validateParameters(double[] param) throws NullArgumentException, DimensionMismatchException, NotStrictlyPositiveException { if (param == null) { throw new NullArgumentException(); } if (param.length != 3) { throw new DimensionMismatchException(param.length, 3); } if (param[2] <= 0) { throw new NotStrictlyPositiveException(param[2]); } } } /** * @param xMinusMean {@code x - mean}. * @param norm Normalization factor. * @param i2s2 Inverse of twice the square of the standard deviation. * @return the value of the Gaussian at {@code x}. */ private static double value(double xMinusMean, double norm, double i2s2) { return norm * FastMath.exp(-xMinusMean * xMinusMean * i2s2); } /** {@inheritDoc} * @since 3.1 */ public DerivativeStructure value(final DerivativeStructure t) throws DimensionMismatchException { final double u = is * (t.getValue() - mean); double[] f = new double[t.getOrder() + 1]; // the nth order derivative of the Gaussian has the form: // dn(g(x)/dxn = (norm / s^n) P_n(u) exp(-u^2/2) with u=(x-m)/s // where P_n(u) is a degree n polynomial with same parity as n // P_0(u) = 1, P_1(u) = -u, P_2(u) = u^2 - 1, P_3(u) = -u^3 + 3 u... // the general recurrence relation for P_n is: // P_n(u) = P_(n-1)'(u) - u P_(n-1)(u) // as per polynomial parity, we can store coefficients of both P_(n-1) and P_n in the same array final double[] p = new double[f.length]; p[0] = 1; final double u2 = u * u; double coeff = norm * FastMath.exp(-0.5 * u2); if (coeff <= Precision.SAFE_MIN) { Arrays.fill(f, 0.0); } else { f[0] = coeff; for (int n = 1; n < f.length; ++n) { // update and evaluate polynomial P_n(x) double v = 0; p[n] = -p[n - 1]; for (int k = n; k >= 0; k -= 2) { v = v * u2 + p[k]; if (k > 2) { p[k - 2] = (k - 1) * p[k - 1] - p[k - 3]; } else if (k == 2) { p[0] = p[1]; } } if ((n & 0x1) == 1) { v *= u; } coeff *= is; f[n] = coeff * v; } } return t.compose(f); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy