All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.analysis.solvers.BracketingNthOrderBrentSolver Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.analysis.solvers;


import org.apache.commons.math3.analysis.UnivariateFunction;
import org.apache.commons.math3.exception.MathInternalError;
import org.apache.commons.math3.exception.NoBracketingException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.exception.TooManyEvaluationsException;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.Precision;

/**
 * This class implements a modification of the  Brent algorithm.
 * 

* The changes with respect to the original Brent algorithm are: *

    *
  • the returned value is chosen in the current interval according * to user specified {@link AllowedSolution},
  • *
  • the maximal order for the invert polynomial root search is * user-specified instead of being invert quadratic only
  • *

* The given interval must bracket the root.

* */ public class BracketingNthOrderBrentSolver extends AbstractUnivariateSolver implements BracketedUnivariateSolver { /** Default absolute accuracy. */ private static final double DEFAULT_ABSOLUTE_ACCURACY = 1e-6; /** Default maximal order. */ private static final int DEFAULT_MAXIMAL_ORDER = 5; /** Maximal aging triggering an attempt to balance the bracketing interval. */ private static final int MAXIMAL_AGING = 2; /** Reduction factor for attempts to balance the bracketing interval. */ private static final double REDUCTION_FACTOR = 1.0 / 16.0; /** Maximal order. */ private final int maximalOrder; /** The kinds of solutions that the algorithm may accept. */ private AllowedSolution allowed; /** * Construct a solver with default accuracy and maximal order (1e-6 and 5 respectively) */ public BracketingNthOrderBrentSolver() { this(DEFAULT_ABSOLUTE_ACCURACY, DEFAULT_MAXIMAL_ORDER); } /** * Construct a solver. * * @param absoluteAccuracy Absolute accuracy. * @param maximalOrder maximal order. * @exception NumberIsTooSmallException if maximal order is lower than 2 */ public BracketingNthOrderBrentSolver(final double absoluteAccuracy, final int maximalOrder) throws NumberIsTooSmallException { super(absoluteAccuracy); if (maximalOrder < 2) { throw new NumberIsTooSmallException(maximalOrder, 2, true); } this.maximalOrder = maximalOrder; this.allowed = AllowedSolution.ANY_SIDE; } /** * Construct a solver. * * @param relativeAccuracy Relative accuracy. * @param absoluteAccuracy Absolute accuracy. * @param maximalOrder maximal order. * @exception NumberIsTooSmallException if maximal order is lower than 2 */ public BracketingNthOrderBrentSolver(final double relativeAccuracy, final double absoluteAccuracy, final int maximalOrder) throws NumberIsTooSmallException { super(relativeAccuracy, absoluteAccuracy); if (maximalOrder < 2) { throw new NumberIsTooSmallException(maximalOrder, 2, true); } this.maximalOrder = maximalOrder; this.allowed = AllowedSolution.ANY_SIDE; } /** * Construct a solver. * * @param relativeAccuracy Relative accuracy. * @param absoluteAccuracy Absolute accuracy. * @param functionValueAccuracy Function value accuracy. * @param maximalOrder maximal order. * @exception NumberIsTooSmallException if maximal order is lower than 2 */ public BracketingNthOrderBrentSolver(final double relativeAccuracy, final double absoluteAccuracy, final double functionValueAccuracy, final int maximalOrder) throws NumberIsTooSmallException { super(relativeAccuracy, absoluteAccuracy, functionValueAccuracy); if (maximalOrder < 2) { throw new NumberIsTooSmallException(maximalOrder, 2, true); } this.maximalOrder = maximalOrder; this.allowed = AllowedSolution.ANY_SIDE; } /** Get the maximal order. * @return maximal order */ public int getMaximalOrder() { return maximalOrder; } /** * {@inheritDoc} */ @Override protected double doSolve() throws TooManyEvaluationsException, NumberIsTooLargeException, NoBracketingException { // prepare arrays with the first points final double[] x = new double[maximalOrder + 1]; final double[] y = new double[maximalOrder + 1]; x[0] = getMin(); x[1] = getStartValue(); x[2] = getMax(); verifySequence(x[0], x[1], x[2]); // evaluate initial guess y[1] = computeObjectiveValue(x[1]); if (Precision.equals(y[1], 0.0, 1)) { // return the initial guess if it is a perfect root. return x[1]; } // evaluate first endpoint y[0] = computeObjectiveValue(x[0]); if (Precision.equals(y[0], 0.0, 1)) { // return the first endpoint if it is a perfect root. return x[0]; } int nbPoints; int signChangeIndex; if (y[0] * y[1] < 0) { // reduce interval if it brackets the root nbPoints = 2; signChangeIndex = 1; } else { // evaluate second endpoint y[2] = computeObjectiveValue(x[2]); if (Precision.equals(y[2], 0.0, 1)) { // return the second endpoint if it is a perfect root. return x[2]; } if (y[1] * y[2] < 0) { // use all computed point as a start sampling array for solving nbPoints = 3; signChangeIndex = 2; } else { throw new NoBracketingException(x[0], x[2], y[0], y[2]); } } // prepare a work array for inverse polynomial interpolation final double[] tmpX = new double[x.length]; // current tightest bracketing of the root double xA = x[signChangeIndex - 1]; double yA = y[signChangeIndex - 1]; double absYA = FastMath.abs(yA); int agingA = 0; double xB = x[signChangeIndex]; double yB = y[signChangeIndex]; double absYB = FastMath.abs(yB); int agingB = 0; // search loop while (true) { // check convergence of bracketing interval final double xTol = getAbsoluteAccuracy() + getRelativeAccuracy() * FastMath.max(FastMath.abs(xA), FastMath.abs(xB)); if (((xB - xA) <= xTol) || (FastMath.max(absYA, absYB) < getFunctionValueAccuracy())) { switch (allowed) { case ANY_SIDE : return absYA < absYB ? xA : xB; case LEFT_SIDE : return xA; case RIGHT_SIDE : return xB; case BELOW_SIDE : return (yA <= 0) ? xA : xB; case ABOVE_SIDE : return (yA < 0) ? xB : xA; default : // this should never happen throw new MathInternalError(); } } // target for the next evaluation point double targetY; if (agingA >= MAXIMAL_AGING) { // we keep updating the high bracket, try to compensate this final int p = agingA - MAXIMAL_AGING; final double weightA = (1 << p) - 1; final double weightB = p + 1; targetY = (weightA * yA - weightB * REDUCTION_FACTOR * yB) / (weightA + weightB); } else if (agingB >= MAXIMAL_AGING) { // we keep updating the low bracket, try to compensate this final int p = agingB - MAXIMAL_AGING; final double weightA = p + 1; final double weightB = (1 << p) - 1; targetY = (weightB * yB - weightA * REDUCTION_FACTOR * yA) / (weightA + weightB); } else { // bracketing is balanced, try to find the root itself targetY = 0; } // make a few attempts to guess a root, double nextX; int start = 0; int end = nbPoints; do { // guess a value for current target, using inverse polynomial interpolation System.arraycopy(x, start, tmpX, start, end - start); nextX = guessX(targetY, tmpX, y, start, end); if (!((nextX > xA) && (nextX < xB))) { // the guessed root is not strictly inside of the tightest bracketing interval // the guessed root is either not strictly inside the interval or it // is a NaN (which occurs when some sampling points share the same y) // we try again with a lower interpolation order if (signChangeIndex - start >= end - signChangeIndex) { // we have more points before the sign change, drop the lowest point ++start; } else { // we have more points after sign change, drop the highest point --end; } // we need to do one more attempt nextX = Double.NaN; } } while (Double.isNaN(nextX) && (end - start > 1)); if (Double.isNaN(nextX)) { // fall back to bisection nextX = xA + 0.5 * (xB - xA); start = signChangeIndex - 1; end = signChangeIndex; } // evaluate the function at the guessed root final double nextY = computeObjectiveValue(nextX); if (Precision.equals(nextY, 0.0, 1)) { // we have found an exact root, since it is not an approximation // we don't need to bother about the allowed solutions setting return nextX; } if ((nbPoints > 2) && (end - start != nbPoints)) { // we have been forced to ignore some points to keep bracketing, // they are probably too far from the root, drop them from now on nbPoints = end - start; System.arraycopy(x, start, x, 0, nbPoints); System.arraycopy(y, start, y, 0, nbPoints); signChangeIndex -= start; } else if (nbPoints == x.length) { // we have to drop one point in order to insert the new one nbPoints--; // keep the tightest bracketing interval as centered as possible if (signChangeIndex >= (x.length + 1) / 2) { // we drop the lowest point, we have to shift the arrays and the index System.arraycopy(x, 1, x, 0, nbPoints); System.arraycopy(y, 1, y, 0, nbPoints); --signChangeIndex; } } // insert the last computed point //(by construction, we know it lies inside the tightest bracketing interval) System.arraycopy(x, signChangeIndex, x, signChangeIndex + 1, nbPoints - signChangeIndex); x[signChangeIndex] = nextX; System.arraycopy(y, signChangeIndex, y, signChangeIndex + 1, nbPoints - signChangeIndex); y[signChangeIndex] = nextY; ++nbPoints; // update the bracketing interval if (nextY * yA <= 0) { // the sign change occurs before the inserted point xB = nextX; yB = nextY; absYB = FastMath.abs(yB); ++agingA; agingB = 0; } else { // the sign change occurs after the inserted point xA = nextX; yA = nextY; absYA = FastMath.abs(yA); agingA = 0; ++agingB; // update the sign change index signChangeIndex++; } } } /** Guess an x value by nth order inverse polynomial interpolation. *

* The x value is guessed by evaluating polynomial Q(y) at y = targetY, where Q * is built such that for all considered points (xi, yi), * Q(yi) = xi. *

* @param targetY target value for y * @param x reference points abscissas for interpolation, * note that this array is modified during computation * @param y reference points ordinates for interpolation * @param start start index of the points to consider (inclusive) * @param end end index of the points to consider (exclusive) * @return guessed root (will be a NaN if two points share the same y) */ private double guessX(final double targetY, final double[] x, final double[] y, final int start, final int end) { // compute Q Newton coefficients by divided differences for (int i = start; i < end - 1; ++i) { final int delta = i + 1 - start; for (int j = end - 1; j > i; --j) { x[j] = (x[j] - x[j-1]) / (y[j] - y[j - delta]); } } // evaluate Q(targetY) double x0 = 0; for (int j = end - 1; j >= start; --j) { x0 = x[j] + x0 * (targetY - y[j]); } return x0; } /** {@inheritDoc} */ public double solve(int maxEval, UnivariateFunction f, double min, double max, AllowedSolution allowedSolution) throws TooManyEvaluationsException, NumberIsTooLargeException, NoBracketingException { this.allowed = allowedSolution; return super.solve(maxEval, f, min, max); } /** {@inheritDoc} */ public double solve(int maxEval, UnivariateFunction f, double min, double max, double startValue, AllowedSolution allowedSolution) throws TooManyEvaluationsException, NumberIsTooLargeException, NoBracketingException { this.allowed = allowedSolution; return super.solve(maxEval, f, min, max, startValue); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy