All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.distribution.BetaDistribution Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.distribution;

import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.Well19937c;
import org.apache.commons.math3.special.Beta;
import org.apache.commons.math3.special.Gamma;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.Precision;

/**
 * Implements the Beta distribution.
 *
 * @see Beta distribution
 * @since 2.0 (changed to concrete class in 3.0)
 */
public class BetaDistribution extends AbstractRealDistribution {
    /**
     * Default inverse cumulative probability accuracy.
     * @since 2.1
     */
    public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
    /** Serializable version identifier. */
    private static final long serialVersionUID = -1221965979403477668L;
    /** First shape parameter. */
    private final double alpha;
    /** Second shape parameter. */
    private final double beta;
    /** Normalizing factor used in density computations.
     * updated whenever alpha or beta are changed.
     */
    private double z;
    /** Inverse cumulative probability accuracy. */
    private final double solverAbsoluteAccuracy;

    /**
     * Build a new instance.
     * 

* Note: this constructor will implicitly create an instance of * {@link Well19937c} as random generator to be used for sampling only (see * {@link #sample()} and {@link #sample(int)}). In case no sampling is * needed for the created distribution, it is advised to pass {@code null} * as random generator via the appropriate constructors to avoid the * additional initialisation overhead. * * @param alpha First shape parameter (must be positive). * @param beta Second shape parameter (must be positive). */ public BetaDistribution(double alpha, double beta) { this(alpha, beta, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); } /** * Build a new instance. *

* Note: this constructor will implicitly create an instance of * {@link Well19937c} as random generator to be used for sampling only (see * {@link #sample()} and {@link #sample(int)}). In case no sampling is * needed for the created distribution, it is advised to pass {@code null} * as random generator via the appropriate constructors to avoid the * additional initialisation overhead. * * @param alpha First shape parameter (must be positive). * @param beta Second shape parameter (must be positive). * @param inverseCumAccuracy Maximum absolute error in inverse * cumulative probability estimates (defaults to * {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}). * @since 2.1 */ public BetaDistribution(double alpha, double beta, double inverseCumAccuracy) { this(new Well19937c(), alpha, beta, inverseCumAccuracy); } /** * Creates a β distribution. * * @param rng Random number generator. * @param alpha First shape parameter (must be positive). * @param beta Second shape parameter (must be positive). * @since 3.3 */ public BetaDistribution(RandomGenerator rng, double alpha, double beta) { this(rng, alpha, beta, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); } /** * Creates a β distribution. * * @param rng Random number generator. * @param alpha First shape parameter (must be positive). * @param beta Second shape parameter (must be positive). * @param inverseCumAccuracy Maximum absolute error in inverse * cumulative probability estimates (defaults to * {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}). * @since 3.1 */ public BetaDistribution(RandomGenerator rng, double alpha, double beta, double inverseCumAccuracy) { super(rng); this.alpha = alpha; this.beta = beta; z = Double.NaN; solverAbsoluteAccuracy = inverseCumAccuracy; } /** * Access the first shape parameter, {@code alpha}. * * @return the first shape parameter. */ public double getAlpha() { return alpha; } /** * Access the second shape parameter, {@code beta}. * * @return the second shape parameter. */ public double getBeta() { return beta; } /** Recompute the normalization factor. */ private void recomputeZ() { if (Double.isNaN(z)) { z = Gamma.logGamma(alpha) + Gamma.logGamma(beta) - Gamma.logGamma(alpha + beta); } } /** {@inheritDoc} */ public double density(double x) { final double logDensity = logDensity(x); return logDensity == Double.NEGATIVE_INFINITY ? 0 : FastMath.exp(logDensity); } /** {@inheritDoc} **/ @Override public double logDensity(double x) { recomputeZ(); if (x < 0 || x > 1) { return Double.NEGATIVE_INFINITY; } else if (x == 0) { if (alpha < 1) { throw new NumberIsTooSmallException(LocalizedFormats.CANNOT_COMPUTE_BETA_DENSITY_AT_0_FOR_SOME_ALPHA, alpha, 1, false); } return Double.NEGATIVE_INFINITY; } else if (x == 1) { if (beta < 1) { throw new NumberIsTooSmallException(LocalizedFormats.CANNOT_COMPUTE_BETA_DENSITY_AT_1_FOR_SOME_BETA, beta, 1, false); } return Double.NEGATIVE_INFINITY; } else { double logX = FastMath.log(x); double log1mX = FastMath.log1p(-x); return (alpha - 1) * logX + (beta - 1) * log1mX - z; } } /** {@inheritDoc} */ public double cumulativeProbability(double x) { if (x <= 0) { return 0; } else if (x >= 1) { return 1; } else { return Beta.regularizedBeta(x, alpha, beta); } } /** * Return the absolute accuracy setting of the solver used to estimate * inverse cumulative probabilities. * * @return the solver absolute accuracy. * @since 2.1 */ @Override protected double getSolverAbsoluteAccuracy() { return solverAbsoluteAccuracy; } /** * {@inheritDoc} * * For first shape parameter {@code alpha} and second shape parameter * {@code beta}, the mean is {@code alpha / (alpha + beta)}. */ public double getNumericalMean() { final double a = getAlpha(); return a / (a + getBeta()); } /** * {@inheritDoc} * * For first shape parameter {@code alpha} and second shape parameter * {@code beta}, the variance is * {@code (alpha * beta) / [(alpha + beta)^2 * (alpha + beta + 1)]}. */ public double getNumericalVariance() { final double a = getAlpha(); final double b = getBeta(); final double alphabetasum = a + b; return (a * b) / ((alphabetasum * alphabetasum) * (alphabetasum + 1)); } /** * {@inheritDoc} * * The lower bound of the support is always 0 no matter the parameters. * * @return lower bound of the support (always 0) */ public double getSupportLowerBound() { return 0; } /** * {@inheritDoc} * * The upper bound of the support is always 1 no matter the parameters. * * @return upper bound of the support (always 1) */ public double getSupportUpperBound() { return 1; } /** {@inheritDoc} */ public boolean isSupportLowerBoundInclusive() { return false; } /** {@inheritDoc} */ public boolean isSupportUpperBoundInclusive() { return false; } /** * {@inheritDoc} * * The support of this distribution is connected. * * @return {@code true} */ public boolean isSupportConnected() { return true; } /** {@inheritDoc} *

* Sampling is performed using Cheng algorithms: *

*

* R. C. H. Cheng, "Generating beta variates with nonintegral shape parameters.". * Communications of the ACM, 21, 317–322, 1978. *

*/ @Override public double sample() { return ChengBetaSampler.sample(random, alpha, beta); } /** Utility class implementing Cheng's algorithms for beta distribution sampling. *

* R. C. H. Cheng, "Generating beta variates with nonintegral shape parameters.". * Communications of the ACM, 21, 317–322, 1978. *

* @since 3.6 */ private static final class ChengBetaSampler { /** * Returns one sample using Cheng's sampling algorithm. * @param random random generator to use * @param alpha distribution first shape parameter * @param beta distribution second shape parameter * @return sampled value */ static double sample(RandomGenerator random, final double alpha, final double beta) { final double a = FastMath.min(alpha, beta); final double b = FastMath.max(alpha, beta); if (a > 1) { return algorithmBB(random, alpha, a, b); } else { return algorithmBC(random, alpha, b, a); } } /** * Returns one sample using Cheng's BB algorithm, when both α and β are greater than 1. * @param random random generator to use * @param a0 distribution first shape parameter (α) * @param a min(α, β) where α, β are the two distribution shape parameters * @param b max(α, β) where α, β are the two distribution shape parameters * @return sampled value */ private static double algorithmBB(RandomGenerator random, final double a0, final double a, final double b) { final double alpha = a + b; final double beta = FastMath.sqrt((alpha - 2.) / (2. * a * b - alpha)); final double gamma = a + 1. / beta; double r; double w; double t; do { final double u1 = random.nextDouble(); final double u2 = random.nextDouble(); final double v = beta * (FastMath.log(u1) - FastMath.log1p(-u1)); w = a * FastMath.exp(v); final double z = u1 * u1 * u2; r = gamma * v - 1.3862944; final double s = a + r - w; if (s + 2.609438 >= 5 * z) { break; } t = FastMath.log(z); if (s >= t) { break; } } while (r + alpha * (FastMath.log(alpha) - FastMath.log(b + w)) < t); w = FastMath.min(w, Double.MAX_VALUE); return Precision.equals(a, a0) ? w / (b + w) : b / (b + w); } /** * Returns one sample using Cheng's BC algorithm, when at least one of α and β is smaller than 1. * @param random random generator to use * @param a0 distribution first shape parameter (α) * @param a max(α, β) where α, β are the two distribution shape parameters * @param b min(α, β) where α, β are the two distribution shape parameters * @return sampled value */ private static double algorithmBC(RandomGenerator random, final double a0, final double a, final double b) { final double alpha = a + b; final double beta = 1. / b; final double delta = 1. + a - b; final double k1 = delta * (0.0138889 + 0.0416667 * b) / (a * beta - 0.777778); final double k2 = 0.25 + (0.5 + 0.25 / delta) * b; double w; for (;;) { final double u1 = random.nextDouble(); final double u2 = random.nextDouble(); final double y = u1 * u2; final double z = u1 * y; if (u1 < 0.5) { if (0.25 * u2 + z - y >= k1) { continue; } } else { if (z <= 0.25) { final double v = beta * (FastMath.log(u1) - FastMath.log1p(-u1)); w = a * FastMath.exp(v); break; } if (z >= k2) { continue; } } final double v = beta * (FastMath.log(u1) - FastMath.log1p(-u1)); w = a * FastMath.exp(v); if (alpha * (FastMath.log(alpha) - FastMath.log(b + w) + v) - 1.3862944 >= FastMath.log(z)) { break; } } w = FastMath.min(w, Double.MAX_VALUE); return Precision.equals(a, a0) ? w / (b + w) : b / (b + w); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy