All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.distribution.HypergeometricDistribution Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.distribution;

import org.apache.commons.math3.exception.NotPositiveException;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.Well19937c;
import org.apache.commons.math3.util.FastMath;

/**
 * Implementation of the hypergeometric distribution.
 *
 * @see Hypergeometric distribution (Wikipedia)
 * @see Hypergeometric distribution (MathWorld)
 */
public class HypergeometricDistribution extends AbstractIntegerDistribution {
    /** Serializable version identifier. */
    private static final long serialVersionUID = -436928820673516179L;
    /** The number of successes in the population. */
    private final int numberOfSuccesses;
    /** The population size. */
    private final int populationSize;
    /** The sample size. */
    private final int sampleSize;
    /** Cached numerical variance */
    private double numericalVariance = Double.NaN;
    /** Whether or not the numerical variance has been calculated */
    private boolean numericalVarianceIsCalculated = false;

    /**
     * Construct a new hypergeometric distribution with the specified population
     * size, number of successes in the population, and sample size.
     * 

* Note: this constructor will implicitly create an instance of * {@link Well19937c} as random generator to be used for sampling only (see * {@link #sample()} and {@link #sample(int)}). In case no sampling is * needed for the created distribution, it is advised to pass {@code null} * as random generator via the appropriate constructors to avoid the * additional initialisation overhead. * * @param populationSize Population size. * @param numberOfSuccesses Number of successes in the population. * @param sampleSize Sample size. * @throws NotPositiveException if {@code numberOfSuccesses < 0}. * @throws NotStrictlyPositiveException if {@code populationSize <= 0}. * @throws NumberIsTooLargeException if {@code numberOfSuccesses > populationSize}, * or {@code sampleSize > populationSize}. */ public HypergeometricDistribution(int populationSize, int numberOfSuccesses, int sampleSize) throws NotPositiveException, NotStrictlyPositiveException, NumberIsTooLargeException { this(new Well19937c(), populationSize, numberOfSuccesses, sampleSize); } /** * Creates a new hypergeometric distribution. * * @param rng Random number generator. * @param populationSize Population size. * @param numberOfSuccesses Number of successes in the population. * @param sampleSize Sample size. * @throws NotPositiveException if {@code numberOfSuccesses < 0}. * @throws NotStrictlyPositiveException if {@code populationSize <= 0}. * @throws NumberIsTooLargeException if {@code numberOfSuccesses > populationSize}, * or {@code sampleSize > populationSize}. * @since 3.1 */ public HypergeometricDistribution(RandomGenerator rng, int populationSize, int numberOfSuccesses, int sampleSize) throws NotPositiveException, NotStrictlyPositiveException, NumberIsTooLargeException { super(rng); if (populationSize <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.POPULATION_SIZE, populationSize); } if (numberOfSuccesses < 0) { throw new NotPositiveException(LocalizedFormats.NUMBER_OF_SUCCESSES, numberOfSuccesses); } if (sampleSize < 0) { throw new NotPositiveException(LocalizedFormats.NUMBER_OF_SAMPLES, sampleSize); } if (numberOfSuccesses > populationSize) { throw new NumberIsTooLargeException(LocalizedFormats.NUMBER_OF_SUCCESS_LARGER_THAN_POPULATION_SIZE, numberOfSuccesses, populationSize, true); } if (sampleSize > populationSize) { throw new NumberIsTooLargeException(LocalizedFormats.SAMPLE_SIZE_LARGER_THAN_POPULATION_SIZE, sampleSize, populationSize, true); } this.numberOfSuccesses = numberOfSuccesses; this.populationSize = populationSize; this.sampleSize = sampleSize; } /** {@inheritDoc} */ public double cumulativeProbability(int x) { double ret; int[] domain = getDomain(populationSize, numberOfSuccesses, sampleSize); if (x < domain[0]) { ret = 0.0; } else if (x >= domain[1]) { ret = 1.0; } else { ret = innerCumulativeProbability(domain[0], x, 1); } return ret; } /** * Return the domain for the given hypergeometric distribution parameters. * * @param n Population size. * @param m Number of successes in the population. * @param k Sample size. * @return a two element array containing the lower and upper bounds of the * hypergeometric distribution. */ private int[] getDomain(int n, int m, int k) { return new int[] { getLowerDomain(n, m, k), getUpperDomain(m, k) }; } /** * Return the lowest domain value for the given hypergeometric distribution * parameters. * * @param n Population size. * @param m Number of successes in the population. * @param k Sample size. * @return the lowest domain value of the hypergeometric distribution. */ private int getLowerDomain(int n, int m, int k) { return FastMath.max(0, m - (n - k)); } /** * Access the number of successes. * * @return the number of successes. */ public int getNumberOfSuccesses() { return numberOfSuccesses; } /** * Access the population size. * * @return the population size. */ public int getPopulationSize() { return populationSize; } /** * Access the sample size. * * @return the sample size. */ public int getSampleSize() { return sampleSize; } /** * Return the highest domain value for the given hypergeometric distribution * parameters. * * @param m Number of successes in the population. * @param k Sample size. * @return the highest domain value of the hypergeometric distribution. */ private int getUpperDomain(int m, int k) { return FastMath.min(k, m); } /** {@inheritDoc} */ public double probability(int x) { final double logProbability = logProbability(x); return logProbability == Double.NEGATIVE_INFINITY ? 0 : FastMath.exp(logProbability); } /** {@inheritDoc} */ @Override public double logProbability(int x) { double ret; int[] domain = getDomain(populationSize, numberOfSuccesses, sampleSize); if (x < domain[0] || x > domain[1]) { ret = Double.NEGATIVE_INFINITY; } else { double p = (double) sampleSize / (double) populationSize; double q = (double) (populationSize - sampleSize) / (double) populationSize; double p1 = SaddlePointExpansion.logBinomialProbability(x, numberOfSuccesses, p, q); double p2 = SaddlePointExpansion.logBinomialProbability(sampleSize - x, populationSize - numberOfSuccesses, p, q); double p3 = SaddlePointExpansion.logBinomialProbability(sampleSize, populationSize, p, q); ret = p1 + p2 - p3; } return ret; } /** * For this distribution, {@code X}, this method returns {@code P(X >= x)}. * * @param x Value at which the CDF is evaluated. * @return the upper tail CDF for this distribution. * @since 1.1 */ public double upperCumulativeProbability(int x) { double ret; final int[] domain = getDomain(populationSize, numberOfSuccesses, sampleSize); if (x <= domain[0]) { ret = 1.0; } else if (x > domain[1]) { ret = 0.0; } else { ret = innerCumulativeProbability(domain[1], x, -1); } return ret; } /** * For this distribution, {@code X}, this method returns * {@code P(x0 <= X <= x1)}. * This probability is computed by summing the point probabilities for the * values {@code x0, x0 + 1, x0 + 2, ..., x1}, in the order directed by * {@code dx}. * * @param x0 Inclusive lower bound. * @param x1 Inclusive upper bound. * @param dx Direction of summation (1 indicates summing from x0 to x1, and * 0 indicates summing from x1 to x0). * @return {@code P(x0 <= X <= x1)}. */ private double innerCumulativeProbability(int x0, int x1, int dx) { double ret = probability(x0); while (x0 != x1) { x0 += dx; ret += probability(x0); } return ret; } /** * {@inheritDoc} * * For population size {@code N}, number of successes {@code m}, and sample * size {@code n}, the mean is {@code n * m / N}. */ public double getNumericalMean() { return getSampleSize() * (getNumberOfSuccesses() / (double) getPopulationSize()); } /** * {@inheritDoc} * * For population size {@code N}, number of successes {@code m}, and sample * size {@code n}, the variance is * {@code [n * m * (N - n) * (N - m)] / [N^2 * (N - 1)]}. */ public double getNumericalVariance() { if (!numericalVarianceIsCalculated) { numericalVariance = calculateNumericalVariance(); numericalVarianceIsCalculated = true; } return numericalVariance; } /** * Used by {@link #getNumericalVariance()}. * * @return the variance of this distribution */ protected double calculateNumericalVariance() { final double N = getPopulationSize(); final double m = getNumberOfSuccesses(); final double n = getSampleSize(); return (n * m * (N - n) * (N - m)) / (N * N * (N - 1)); } /** * {@inheritDoc} * * For population size {@code N}, number of successes {@code m}, and sample * size {@code n}, the lower bound of the support is * {@code max(0, n + m - N)}. * * @return lower bound of the support */ public int getSupportLowerBound() { return FastMath.max(0, getSampleSize() + getNumberOfSuccesses() - getPopulationSize()); } /** * {@inheritDoc} * * For number of successes {@code m} and sample size {@code n}, the upper * bound of the support is {@code min(m, n)}. * * @return upper bound of the support */ public int getSupportUpperBound() { return FastMath.min(getNumberOfSuccesses(), getSampleSize()); } /** * {@inheritDoc} * * The support of this distribution is connected. * * @return {@code true} */ public boolean isSupportConnected() { return true; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy