All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.distribution.LogNormalDistribution Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.distribution;

import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.Well19937c;
import org.apache.commons.math3.special.Erf;
import org.apache.commons.math3.util.FastMath;

/**
 * Implementation of the log-normal (gaussian) distribution.
 *
 * 

* Parameters: * {@code X} is log-normally distributed if its natural logarithm {@code log(X)} * is normally distributed. The probability distribution function of {@code X} * is given by (for {@code x > 0}) *

*

* {@code exp(-0.5 * ((ln(x) - m) / s)^2) / (s * sqrt(2 * pi) * x)} *

*
    *
  • {@code m} is the scale parameter: this is the mean of the * normally distributed natural logarithm of this distribution,
  • *
  • {@code s} is the shape parameter: this is the standard * deviation of the normally distributed natural logarithm of this * distribution. *
* * @see * Log-normal distribution (Wikipedia) * @see * Log Normal distribution (MathWorld) * * @since 3.0 */ public class LogNormalDistribution extends AbstractRealDistribution { /** Default inverse cumulative probability accuracy. */ public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9; /** Serializable version identifier. */ private static final long serialVersionUID = 20120112; /** √(2 π) */ private static final double SQRT2PI = FastMath.sqrt(2 * FastMath.PI); /** √(2) */ private static final double SQRT2 = FastMath.sqrt(2.0); /** The scale parameter of this distribution. */ private final double scale; /** The shape parameter of this distribution. */ private final double shape; /** The value of {@code log(shape) + 0.5 * log(2*PI)} stored for faster computation. */ private final double logShapePlusHalfLog2Pi; /** Inverse cumulative probability accuracy. */ private final double solverAbsoluteAccuracy; /** * Create a log-normal distribution, where the mean and standard deviation * of the {@link NormalDistribution normally distributed} natural * logarithm of the log-normal distribution are equal to zero and one * respectively. In other words, the scale of the returned distribution is * {@code 0}, while its shape is {@code 1}. *

* Note: this constructor will implicitly create an instance of * {@link Well19937c} as random generator to be used for sampling only (see * {@link #sample()} and {@link #sample(int)}). In case no sampling is * needed for the created distribution, it is advised to pass {@code null} * as random generator via the appropriate constructors to avoid the * additional initialisation overhead. */ public LogNormalDistribution() { this(0, 1); } /** * Create a log-normal distribution using the specified scale and shape. *

* Note: this constructor will implicitly create an instance of * {@link Well19937c} as random generator to be used for sampling only (see * {@link #sample()} and {@link #sample(int)}). In case no sampling is * needed for the created distribution, it is advised to pass {@code null} * as random generator via the appropriate constructors to avoid the * additional initialisation overhead. * * @param scale the scale parameter of this distribution * @param shape the shape parameter of this distribution * @throws NotStrictlyPositiveException if {@code shape <= 0}. */ public LogNormalDistribution(double scale, double shape) throws NotStrictlyPositiveException { this(scale, shape, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); } /** * Create a log-normal distribution using the specified scale, shape and * inverse cumulative distribution accuracy. *

* Note: this constructor will implicitly create an instance of * {@link Well19937c} as random generator to be used for sampling only (see * {@link #sample()} and {@link #sample(int)}). In case no sampling is * needed for the created distribution, it is advised to pass {@code null} * as random generator via the appropriate constructors to avoid the * additional initialisation overhead. * * @param scale the scale parameter of this distribution * @param shape the shape parameter of this distribution * @param inverseCumAccuracy Inverse cumulative probability accuracy. * @throws NotStrictlyPositiveException if {@code shape <= 0}. */ public LogNormalDistribution(double scale, double shape, double inverseCumAccuracy) throws NotStrictlyPositiveException { this(new Well19937c(), scale, shape, inverseCumAccuracy); } /** * Creates a log-normal distribution. * * @param rng Random number generator. * @param scale Scale parameter of this distribution. * @param shape Shape parameter of this distribution. * @throws NotStrictlyPositiveException if {@code shape <= 0}. * @since 3.3 */ public LogNormalDistribution(RandomGenerator rng, double scale, double shape) throws NotStrictlyPositiveException { this(rng, scale, shape, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); } /** * Creates a log-normal distribution. * * @param rng Random number generator. * @param scale Scale parameter of this distribution. * @param shape Shape parameter of this distribution. * @param inverseCumAccuracy Inverse cumulative probability accuracy. * @throws NotStrictlyPositiveException if {@code shape <= 0}. * @since 3.1 */ public LogNormalDistribution(RandomGenerator rng, double scale, double shape, double inverseCumAccuracy) throws NotStrictlyPositiveException { super(rng); if (shape <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.SHAPE, shape); } this.scale = scale; this.shape = shape; this.logShapePlusHalfLog2Pi = FastMath.log(shape) + 0.5 * FastMath.log(2 * FastMath.PI); this.solverAbsoluteAccuracy = inverseCumAccuracy; } /** * Returns the scale parameter of this distribution. * * @return the scale parameter */ public double getScale() { return scale; } /** * Returns the shape parameter of this distribution. * * @return the shape parameter */ public double getShape() { return shape; } /** * {@inheritDoc} * * For scale {@code m}, and shape {@code s} of this distribution, the PDF * is given by *

    *
  • {@code 0} if {@code x <= 0},
  • *
  • {@code exp(-0.5 * ((ln(x) - m) / s)^2) / (s * sqrt(2 * pi) * x)} * otherwise.
  • *
*/ public double density(double x) { if (x <= 0) { return 0; } final double x0 = FastMath.log(x) - scale; final double x1 = x0 / shape; return FastMath.exp(-0.5 * x1 * x1) / (shape * SQRT2PI * x); } /** {@inheritDoc} * * See documentation of {@link #density(double)} for computation details. */ @Override public double logDensity(double x) { if (x <= 0) { return Double.NEGATIVE_INFINITY; } final double logX = FastMath.log(x); final double x0 = logX - scale; final double x1 = x0 / shape; return -0.5 * x1 * x1 - (logShapePlusHalfLog2Pi + logX); } /** * {@inheritDoc} * * For scale {@code m}, and shape {@code s} of this distribution, the CDF * is given by *
    *
  • {@code 0} if {@code x <= 0},
  • *
  • {@code 0} if {@code ln(x) - m < 0} and {@code m - ln(x) > 40 * s}, as * in these cases the actual value is within {@code Double.MIN_VALUE} of 0, *
  • {@code 1} if {@code ln(x) - m >= 0} and {@code ln(x) - m > 40 * s}, * as in these cases the actual value is within {@code Double.MIN_VALUE} of * 1,
  • *
  • {@code 0.5 + 0.5 * erf((ln(x) - m) / (s * sqrt(2))} otherwise.
  • *
*/ public double cumulativeProbability(double x) { if (x <= 0) { return 0; } final double dev = FastMath.log(x) - scale; if (FastMath.abs(dev) > 40 * shape) { return dev < 0 ? 0.0d : 1.0d; } return 0.5 + 0.5 * Erf.erf(dev / (shape * SQRT2)); } /** * {@inheritDoc} * * @deprecated See {@link RealDistribution#cumulativeProbability(double,double)} */ @Override@Deprecated public double cumulativeProbability(double x0, double x1) throws NumberIsTooLargeException { return probability(x0, x1); } /** {@inheritDoc} */ @Override public double probability(double x0, double x1) throws NumberIsTooLargeException { if (x0 > x1) { throw new NumberIsTooLargeException(LocalizedFormats.LOWER_ENDPOINT_ABOVE_UPPER_ENDPOINT, x0, x1, true); } if (x0 <= 0 || x1 <= 0) { return super.probability(x0, x1); } final double denom = shape * SQRT2; final double v0 = (FastMath.log(x0) - scale) / denom; final double v1 = (FastMath.log(x1) - scale) / denom; return 0.5 * Erf.erf(v0, v1); } /** {@inheritDoc} */ @Override protected double getSolverAbsoluteAccuracy() { return solverAbsoluteAccuracy; } /** * {@inheritDoc} * * For scale {@code m} and shape {@code s}, the mean is * {@code exp(m + s^2 / 2)}. */ public double getNumericalMean() { double s = shape; return FastMath.exp(scale + (s * s / 2)); } /** * {@inheritDoc} * * For scale {@code m} and shape {@code s}, the variance is * {@code (exp(s^2) - 1) * exp(2 * m + s^2)}. */ public double getNumericalVariance() { final double s = shape; final double ss = s * s; return (FastMath.expm1(ss)) * FastMath.exp(2 * scale + ss); } /** * {@inheritDoc} * * The lower bound of the support is always 0 no matter the parameters. * * @return lower bound of the support (always 0) */ public double getSupportLowerBound() { return 0; } /** * {@inheritDoc} * * The upper bound of the support is always positive infinity * no matter the parameters. * * @return upper bound of the support (always * {@code Double.POSITIVE_INFINITY}) */ public double getSupportUpperBound() { return Double.POSITIVE_INFINITY; } /** {@inheritDoc} */ public boolean isSupportLowerBoundInclusive() { return true; } /** {@inheritDoc} */ public boolean isSupportUpperBoundInclusive() { return false; } /** * {@inheritDoc} * * The support of this distribution is connected. * * @return {@code true} */ public boolean isSupportConnected() { return true; } /** {@inheritDoc} */ @Override public double sample() { final double n = random.nextGaussian(); return FastMath.exp(scale + shape * n); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy