All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.distribution.ParetoDistribution Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.distribution;

import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.Well19937c;
import org.apache.commons.math3.util.FastMath;

/**
 * Implementation of the Pareto distribution.
 *
 * 

* Parameters: * The probability distribution function of {@code X} is given by (for {@code x >= k}): *

 *  α * k^α / x^(α + 1)
 * 
*

*

    *
  • {@code k} is the scale parameter: this is the minimum possible value of {@code X},
  • *
  • {@code α} is the shape parameter: this is the Pareto index
  • *
* * @see * Pareto distribution (Wikipedia) * @see * Pareto distribution (MathWorld) * * @since 3.3 */ public class ParetoDistribution extends AbstractRealDistribution { /** Default inverse cumulative probability accuracy. */ public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9; /** Serializable version identifier. */ private static final long serialVersionUID = 20130424; /** The scale parameter of this distribution. */ private final double scale; /** The shape parameter of this distribution. */ private final double shape; /** Inverse cumulative probability accuracy. */ private final double solverAbsoluteAccuracy; /** * Create a Pareto distribution with a scale of {@code 1} and a shape of {@code 1}. */ public ParetoDistribution() { this(1, 1); } /** * Create a Pareto distribution using the specified scale and shape. *

* Note: this constructor will implicitly create an instance of * {@link Well19937c} as random generator to be used for sampling only (see * {@link #sample()} and {@link #sample(int)}). In case no sampling is * needed for the created distribution, it is advised to pass {@code null} * as random generator via the appropriate constructors to avoid the * additional initialisation overhead. * * @param scale the scale parameter of this distribution * @param shape the shape parameter of this distribution * @throws NotStrictlyPositiveException if {@code scale <= 0} or {@code shape <= 0}. */ public ParetoDistribution(double scale, double shape) throws NotStrictlyPositiveException { this(scale, shape, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); } /** * Create a Pareto distribution using the specified scale, shape and * inverse cumulative distribution accuracy. *

* Note: this constructor will implicitly create an instance of * {@link Well19937c} as random generator to be used for sampling only (see * {@link #sample()} and {@link #sample(int)}). In case no sampling is * needed for the created distribution, it is advised to pass {@code null} * as random generator via the appropriate constructors to avoid the * additional initialisation overhead. * * @param scale the scale parameter of this distribution * @param shape the shape parameter of this distribution * @param inverseCumAccuracy Inverse cumulative probability accuracy. * @throws NotStrictlyPositiveException if {@code scale <= 0} or {@code shape <= 0}. */ public ParetoDistribution(double scale, double shape, double inverseCumAccuracy) throws NotStrictlyPositiveException { this(new Well19937c(), scale, shape, inverseCumAccuracy); } /** * Creates a Pareto distribution. * * @param rng Random number generator. * @param scale Scale parameter of this distribution. * @param shape Shape parameter of this distribution. * @throws NotStrictlyPositiveException if {@code scale <= 0} or {@code shape <= 0}. */ public ParetoDistribution(RandomGenerator rng, double scale, double shape) throws NotStrictlyPositiveException { this(rng, scale, shape, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); } /** * Creates a Pareto distribution. * * @param rng Random number generator. * @param scale Scale parameter of this distribution. * @param shape Shape parameter of this distribution. * @param inverseCumAccuracy Inverse cumulative probability accuracy. * @throws NotStrictlyPositiveException if {@code scale <= 0} or {@code shape <= 0}. */ public ParetoDistribution(RandomGenerator rng, double scale, double shape, double inverseCumAccuracy) throws NotStrictlyPositiveException { super(rng); if (scale <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.SCALE, scale); } if (shape <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.SHAPE, shape); } this.scale = scale; this.shape = shape; this.solverAbsoluteAccuracy = inverseCumAccuracy; } /** * Returns the scale parameter of this distribution. * * @return the scale parameter */ public double getScale() { return scale; } /** * Returns the shape parameter of this distribution. * * @return the shape parameter */ public double getShape() { return shape; } /** * {@inheritDoc} *

* For scale {@code k}, and shape {@code α} of this distribution, the PDF * is given by *

    *
  • {@code 0} if {@code x < k},
  • *
  • {@code α * k^α / x^(α + 1)} otherwise.
  • *
*/ public double density(double x) { if (x < scale) { return 0; } return FastMath.pow(scale, shape) / FastMath.pow(x, shape + 1) * shape; } /** {@inheritDoc} * * See documentation of {@link #density(double)} for computation details. */ @Override public double logDensity(double x) { if (x < scale) { return Double.NEGATIVE_INFINITY; } return FastMath.log(scale) * shape - FastMath.log(x) * (shape + 1) + FastMath.log(shape); } /** * {@inheritDoc} *

* For scale {@code k}, and shape {@code α} of this distribution, the CDF is given by *

    *
  • {@code 0} if {@code x < k},
  • *
  • {@code 1 - (k / x)^α} otherwise.
  • *
*/ public double cumulativeProbability(double x) { if (x <= scale) { return 0; } return 1 - FastMath.pow(scale / x, shape); } /** * {@inheritDoc} * * @deprecated See {@link RealDistribution#cumulativeProbability(double,double)} */ @Override @Deprecated public double cumulativeProbability(double x0, double x1) throws NumberIsTooLargeException { return probability(x0, x1); } /** {@inheritDoc} */ @Override protected double getSolverAbsoluteAccuracy() { return solverAbsoluteAccuracy; } /** * {@inheritDoc} *

* For scale {@code k} and shape {@code α}, the mean is given by *

    *
  • {@code ∞} if {@code α <= 1},
  • *
  • {@code α * k / (α - 1)} otherwise.
  • *
*/ public double getNumericalMean() { if (shape <= 1) { return Double.POSITIVE_INFINITY; } return shape * scale / (shape - 1); } /** * {@inheritDoc} *

* For scale {@code k} and shape {@code α}, the variance is given by *

    *
  • {@code ∞} if {@code 1 < α <= 2},
  • *
  • {@code k^2 * α / ((α - 1)^2 * (α - 2))} otherwise.
  • *
*/ public double getNumericalVariance() { if (shape <= 2) { return Double.POSITIVE_INFINITY; } double s = shape - 1; return scale * scale * shape / (s * s) / (shape - 2); } /** * {@inheritDoc} *

* The lower bound of the support is equal to the scale parameter {@code k}. * * @return lower bound of the support */ public double getSupportLowerBound() { return scale; } /** * {@inheritDoc} *

* The upper bound of the support is always positive infinity no matter the parameters. * * @return upper bound of the support (always {@code Double.POSITIVE_INFINITY}) */ public double getSupportUpperBound() { return Double.POSITIVE_INFINITY; } /** {@inheritDoc} */ public boolean isSupportLowerBoundInclusive() { return true; } /** {@inheritDoc} */ public boolean isSupportUpperBoundInclusive() { return false; } /** * {@inheritDoc} *

* The support of this distribution is connected. * * @return {@code true} */ public boolean isSupportConnected() { return true; } /** {@inheritDoc} */ @Override public double sample() { final double n = random.nextDouble(); return scale / FastMath.pow(n, 1 / shape); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy