All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.distribution.PoissonDistribution Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.distribution;

import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.Well19937c;
import org.apache.commons.math3.special.Gamma;
import org.apache.commons.math3.util.CombinatoricsUtils;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.MathUtils;

/**
 * Implementation of the Poisson distribution.
 *
 * @see Poisson distribution (Wikipedia)
 * @see Poisson distribution (MathWorld)
 */
public class PoissonDistribution extends AbstractIntegerDistribution {
    /**
     * Default maximum number of iterations for cumulative probability calculations.
     * @since 2.1
     */
    public static final int DEFAULT_MAX_ITERATIONS = 10000000;
    /**
     * Default convergence criterion.
     * @since 2.1
     */
    public static final double DEFAULT_EPSILON = 1e-12;
    /** Serializable version identifier. */
    private static final long serialVersionUID = -3349935121172596109L;
    /** Distribution used to compute normal approximation. */
    private final NormalDistribution normal;
    /** Distribution needed for the {@link #sample()} method. */
    private final ExponentialDistribution exponential;
    /** Mean of the distribution. */
    private final double mean;

    /**
     * Maximum number of iterations for cumulative probability. Cumulative
     * probabilities are estimated using either Lanczos series approximation
     * of {@link Gamma#regularizedGammaP(double, double, double, int)}
     * or continued fraction approximation of
     * {@link Gamma#regularizedGammaQ(double, double, double, int)}.
     */
    private final int maxIterations;

    /** Convergence criterion for cumulative probability. */
    private final double epsilon;

    /**
     * Creates a new Poisson distribution with specified mean.
     * 

* Note: this constructor will implicitly create an instance of * {@link Well19937c} as random generator to be used for sampling only (see * {@link #sample()} and {@link #sample(int)}). In case no sampling is * needed for the created distribution, it is advised to pass {@code null} * as random generator via the appropriate constructors to avoid the * additional initialisation overhead. * * @param p the Poisson mean * @throws NotStrictlyPositiveException if {@code p <= 0}. */ public PoissonDistribution(double p) throws NotStrictlyPositiveException { this(p, DEFAULT_EPSILON, DEFAULT_MAX_ITERATIONS); } /** * Creates a new Poisson distribution with specified mean, convergence * criterion and maximum number of iterations. *

* Note: this constructor will implicitly create an instance of * {@link Well19937c} as random generator to be used for sampling only (see * {@link #sample()} and {@link #sample(int)}). In case no sampling is * needed for the created distribution, it is advised to pass {@code null} * as random generator via the appropriate constructors to avoid the * additional initialisation overhead. * * @param p Poisson mean. * @param epsilon Convergence criterion for cumulative probabilities. * @param maxIterations the maximum number of iterations for cumulative * probabilities. * @throws NotStrictlyPositiveException if {@code p <= 0}. * @since 2.1 */ public PoissonDistribution(double p, double epsilon, int maxIterations) throws NotStrictlyPositiveException { this(new Well19937c(), p, epsilon, maxIterations); } /** * Creates a new Poisson distribution with specified mean, convergence * criterion and maximum number of iterations. * * @param rng Random number generator. * @param p Poisson mean. * @param epsilon Convergence criterion for cumulative probabilities. * @param maxIterations the maximum number of iterations for cumulative * probabilities. * @throws NotStrictlyPositiveException if {@code p <= 0}. * @since 3.1 */ public PoissonDistribution(RandomGenerator rng, double p, double epsilon, int maxIterations) throws NotStrictlyPositiveException { super(rng); if (p <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.MEAN, p); } mean = p; this.epsilon = epsilon; this.maxIterations = maxIterations; // Use the same RNG instance as the parent class. normal = new NormalDistribution(rng, p, FastMath.sqrt(p), NormalDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY); exponential = new ExponentialDistribution(rng, 1, ExponentialDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY); } /** * Creates a new Poisson distribution with the specified mean and * convergence criterion. * * @param p Poisson mean. * @param epsilon Convergence criterion for cumulative probabilities. * @throws NotStrictlyPositiveException if {@code p <= 0}. * @since 2.1 */ public PoissonDistribution(double p, double epsilon) throws NotStrictlyPositiveException { this(p, epsilon, DEFAULT_MAX_ITERATIONS); } /** * Creates a new Poisson distribution with the specified mean and maximum * number of iterations. * * @param p Poisson mean. * @param maxIterations Maximum number of iterations for cumulative * probabilities. * @since 2.1 */ public PoissonDistribution(double p, int maxIterations) { this(p, DEFAULT_EPSILON, maxIterations); } /** * Get the mean for the distribution. * * @return the mean for the distribution. */ public double getMean() { return mean; } /** {@inheritDoc} */ public double probability(int x) { final double logProbability = logProbability(x); return logProbability == Double.NEGATIVE_INFINITY ? 0 : FastMath.exp(logProbability); } /** {@inheritDoc} */ @Override public double logProbability(int x) { double ret; if (x < 0 || x == Integer.MAX_VALUE) { ret = Double.NEGATIVE_INFINITY; } else if (x == 0) { ret = -mean; } else { ret = -SaddlePointExpansion.getStirlingError(x) - SaddlePointExpansion.getDeviancePart(x, mean) - 0.5 * FastMath.log(MathUtils.TWO_PI) - 0.5 * FastMath.log(x); } return ret; } /** {@inheritDoc} */ public double cumulativeProbability(int x) { if (x < 0) { return 0; } if (x == Integer.MAX_VALUE) { return 1; } return Gamma.regularizedGammaQ((double) x + 1, mean, epsilon, maxIterations); } /** * Calculates the Poisson distribution function using a normal * approximation. The {@code N(mean, sqrt(mean))} distribution is used * to approximate the Poisson distribution. The computation uses * "half-correction" (evaluating the normal distribution function at * {@code x + 0.5}). * * @param x Upper bound, inclusive. * @return the distribution function value calculated using a normal * approximation. */ public double normalApproximateProbability(int x) { // calculate the probability using half-correction return normal.cumulativeProbability(x + 0.5); } /** * {@inheritDoc} * * For mean parameter {@code p}, the mean is {@code p}. */ public double getNumericalMean() { return getMean(); } /** * {@inheritDoc} * * For mean parameter {@code p}, the variance is {@code p}. */ public double getNumericalVariance() { return getMean(); } /** * {@inheritDoc} * * The lower bound of the support is always 0 no matter the mean parameter. * * @return lower bound of the support (always 0) */ public int getSupportLowerBound() { return 0; } /** * {@inheritDoc} * * The upper bound of the support is positive infinity, * regardless of the parameter values. There is no integer infinity, * so this method returns {@code Integer.MAX_VALUE}. * * @return upper bound of the support (always {@code Integer.MAX_VALUE} for * positive infinity) */ public int getSupportUpperBound() { return Integer.MAX_VALUE; } /** * {@inheritDoc} * * The support of this distribution is connected. * * @return {@code true} */ public boolean isSupportConnected() { return true; } /** * {@inheritDoc} *

* Algorithm Description: *

    *
  • For small means, uses simulation of a Poisson process * using Uniform deviates, as described * here. * The Poisson process (and hence value returned) is bounded by 1000 * mean. *
  • *
  • For large means, uses the rejection algorithm described in *
    * Devroye, Luc. (1981).The Computer Generation of Poisson Random Variables
    * Computing vol. 26 pp. 197-207.
    *
    *
  • *
*

* * @return a random value. * @since 2.2 */ @Override public int sample() { return (int) FastMath.min(nextPoisson(mean), Integer.MAX_VALUE); } /** * @param meanPoisson Mean of the Poisson distribution. * @return the next sample. */ private long nextPoisson(double meanPoisson) { final double pivot = 40.0d; if (meanPoisson < pivot) { double p = FastMath.exp(-meanPoisson); long n = 0; double r = 1.0d; double rnd = 1.0d; while (n < 1000 * meanPoisson) { rnd = random.nextDouble(); r *= rnd; if (r >= p) { n++; } else { return n; } } return n; } else { final double lambda = FastMath.floor(meanPoisson); final double lambdaFractional = meanPoisson - lambda; final double logLambda = FastMath.log(lambda); final double logLambdaFactorial = CombinatoricsUtils.factorialLog((int) lambda); final long y2 = lambdaFractional < Double.MIN_VALUE ? 0 : nextPoisson(lambdaFractional); final double delta = FastMath.sqrt(lambda * FastMath.log(32 * lambda / FastMath.PI + 1)); final double halfDelta = delta / 2; final double twolpd = 2 * lambda + delta; final double a1 = FastMath.sqrt(FastMath.PI * twolpd) * FastMath.exp(1 / (8 * lambda)); final double a2 = (twolpd / delta) * FastMath.exp(-delta * (1 + delta) / twolpd); final double aSum = a1 + a2 + 1; final double p1 = a1 / aSum; final double p2 = a2 / aSum; final double c1 = 1 / (8 * lambda); double x = 0; double y = 0; double v = 0; int a = 0; double t = 0; double qr = 0; double qa = 0; for (;;) { final double u = random.nextDouble(); if (u <= p1) { final double n = random.nextGaussian(); x = n * FastMath.sqrt(lambda + halfDelta) - 0.5d; if (x > delta || x < -lambda) { continue; } y = x < 0 ? FastMath.floor(x) : FastMath.ceil(x); final double e = exponential.sample(); v = -e - (n * n / 2) + c1; } else { if (u > p1 + p2) { y = lambda; break; } else { x = delta + (twolpd / delta) * exponential.sample(); y = FastMath.ceil(x); v = -exponential.sample() - delta * (x + 1) / twolpd; } } a = x < 0 ? 1 : 0; t = y * (y + 1) / (2 * lambda); if (v < -t && a == 0) { y = lambda + y; break; } qr = t * ((2 * y + 1) / (6 * lambda) - 1); qa = qr - (t * t) / (3 * (lambda + a * (y + 1))); if (v < qa) { y = lambda + y; break; } if (v > qr) { continue; } if (v < y * logLambda - CombinatoricsUtils.factorialLog((int) (y + lambda)) + logLambdaFactorial) { y = lambda + y; break; } } return y2 + (long) y; } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy