All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.distribution.WeibullDistribution Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.distribution;

import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.OutOfRangeException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.Well19937c;
import org.apache.commons.math3.special.Gamma;
import org.apache.commons.math3.util.FastMath;

/**
 * Implementation of the Weibull distribution. This implementation uses the
 * two parameter form of the distribution defined by
 * 
 * Weibull Distribution, equations (1) and (2).
 *
 * @see Weibull distribution (Wikipedia)
 * @see Weibull distribution (MathWorld)
 * @since 1.1 (changed to concrete class in 3.0)
 */
public class WeibullDistribution extends AbstractRealDistribution {
    /**
     * Default inverse cumulative probability accuracy.
     * @since 2.1
     */
    public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
    /** Serializable version identifier. */
    private static final long serialVersionUID = 8589540077390120676L;
    /** The shape parameter. */
    private final double shape;
    /** The scale parameter. */
    private final double scale;
    /** Inverse cumulative probability accuracy. */
    private final double solverAbsoluteAccuracy;
    /** Cached numerical mean */
    private double numericalMean = Double.NaN;
    /** Whether or not the numerical mean has been calculated */
    private boolean numericalMeanIsCalculated = false;
    /** Cached numerical variance */
    private double numericalVariance = Double.NaN;
    /** Whether or not the numerical variance has been calculated */
    private boolean numericalVarianceIsCalculated = false;

    /**
     * Create a Weibull distribution with the given shape and scale and a
     * location equal to zero.
     * 

* Note: this constructor will implicitly create an instance of * {@link Well19937c} as random generator to be used for sampling only (see * {@link #sample()} and {@link #sample(int)}). In case no sampling is * needed for the created distribution, it is advised to pass {@code null} * as random generator via the appropriate constructors to avoid the * additional initialisation overhead. * * @param alpha Shape parameter. * @param beta Scale parameter. * @throws NotStrictlyPositiveException if {@code alpha <= 0} or * {@code beta <= 0}. */ public WeibullDistribution(double alpha, double beta) throws NotStrictlyPositiveException { this(alpha, beta, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); } /** * Create a Weibull distribution with the given shape, scale and inverse * cumulative probability accuracy and a location equal to zero. *

* Note: this constructor will implicitly create an instance of * {@link Well19937c} as random generator to be used for sampling only (see * {@link #sample()} and {@link #sample(int)}). In case no sampling is * needed for the created distribution, it is advised to pass {@code null} * as random generator via the appropriate constructors to avoid the * additional initialisation overhead. * * @param alpha Shape parameter. * @param beta Scale parameter. * @param inverseCumAccuracy Maximum absolute error in inverse * cumulative probability estimates * (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}). * @throws NotStrictlyPositiveException if {@code alpha <= 0} or * {@code beta <= 0}. * @since 2.1 */ public WeibullDistribution(double alpha, double beta, double inverseCumAccuracy) { this(new Well19937c(), alpha, beta, inverseCumAccuracy); } /** * Creates a Weibull distribution. * * @param rng Random number generator. * @param alpha Shape parameter. * @param beta Scale parameter. * @throws NotStrictlyPositiveException if {@code alpha <= 0} or {@code beta <= 0}. * @since 3.3 */ public WeibullDistribution(RandomGenerator rng, double alpha, double beta) throws NotStrictlyPositiveException { this(rng, alpha, beta, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); } /** * Creates a Weibull distribution. * * @param rng Random number generator. * @param alpha Shape parameter. * @param beta Scale parameter. * @param inverseCumAccuracy Maximum absolute error in inverse * cumulative probability estimates * (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}). * @throws NotStrictlyPositiveException if {@code alpha <= 0} or {@code beta <= 0}. * @since 3.1 */ public WeibullDistribution(RandomGenerator rng, double alpha, double beta, double inverseCumAccuracy) throws NotStrictlyPositiveException { super(rng); if (alpha <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.SHAPE, alpha); } if (beta <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.SCALE, beta); } scale = beta; shape = alpha; solverAbsoluteAccuracy = inverseCumAccuracy; } /** * Access the shape parameter, {@code alpha}. * * @return the shape parameter, {@code alpha}. */ public double getShape() { return shape; } /** * Access the scale parameter, {@code beta}. * * @return the scale parameter, {@code beta}. */ public double getScale() { return scale; } /** {@inheritDoc} */ public double density(double x) { if (x < 0) { return 0; } final double xscale = x / scale; final double xscalepow = FastMath.pow(xscale, shape - 1); /* * FastMath.pow(x / scale, shape) = * FastMath.pow(xscale, shape) = * FastMath.pow(xscale, shape - 1) * xscale */ final double xscalepowshape = xscalepow * xscale; return (shape / scale) * xscalepow * FastMath.exp(-xscalepowshape); } /** {@inheritDoc} */ @Override public double logDensity(double x) { if (x < 0) { return Double.NEGATIVE_INFINITY; } final double xscale = x / scale; final double logxscalepow = FastMath.log(xscale) * (shape - 1); /* * FastMath.pow(x / scale, shape) = * FastMath.pow(xscale, shape) = * FastMath.pow(xscale, shape - 1) * xscale */ final double xscalepowshape = FastMath.exp(logxscalepow) * xscale; return FastMath.log(shape / scale) + logxscalepow - xscalepowshape; } /** {@inheritDoc} */ public double cumulativeProbability(double x) { double ret; if (x <= 0.0) { ret = 0.0; } else { ret = 1.0 - FastMath.exp(-FastMath.pow(x / scale, shape)); } return ret; } /** * {@inheritDoc} * * Returns {@code 0} when {@code p == 0} and * {@code Double.POSITIVE_INFINITY} when {@code p == 1}. */ @Override public double inverseCumulativeProbability(double p) { double ret; if (p < 0.0 || p > 1.0) { throw new OutOfRangeException(p, 0.0, 1.0); } else if (p == 0) { ret = 0.0; } else if (p == 1) { ret = Double.POSITIVE_INFINITY; } else { ret = scale * FastMath.pow(-FastMath.log1p(-p), 1.0 / shape); } return ret; } /** * Return the absolute accuracy setting of the solver used to estimate * inverse cumulative probabilities. * * @return the solver absolute accuracy. * @since 2.1 */ @Override protected double getSolverAbsoluteAccuracy() { return solverAbsoluteAccuracy; } /** * {@inheritDoc} * * The mean is {@code scale * Gamma(1 + (1 / shape))}, where {@code Gamma()} * is the Gamma-function. */ public double getNumericalMean() { if (!numericalMeanIsCalculated) { numericalMean = calculateNumericalMean(); numericalMeanIsCalculated = true; } return numericalMean; } /** * used by {@link #getNumericalMean()} * * @return the mean of this distribution */ protected double calculateNumericalMean() { final double sh = getShape(); final double sc = getScale(); return sc * FastMath.exp(Gamma.logGamma(1 + (1 / sh))); } /** * {@inheritDoc} * * The variance is {@code scale^2 * Gamma(1 + (2 / shape)) - mean^2} * where {@code Gamma()} is the Gamma-function. */ public double getNumericalVariance() { if (!numericalVarianceIsCalculated) { numericalVariance = calculateNumericalVariance(); numericalVarianceIsCalculated = true; } return numericalVariance; } /** * used by {@link #getNumericalVariance()} * * @return the variance of this distribution */ protected double calculateNumericalVariance() { final double sh = getShape(); final double sc = getScale(); final double mn = getNumericalMean(); return (sc * sc) * FastMath.exp(Gamma.logGamma(1 + (2 / sh))) - (mn * mn); } /** * {@inheritDoc} * * The lower bound of the support is always 0 no matter the parameters. * * @return lower bound of the support (always 0) */ public double getSupportLowerBound() { return 0; } /** * {@inheritDoc} * * The upper bound of the support is always positive infinity * no matter the parameters. * * @return upper bound of the support (always * {@code Double.POSITIVE_INFINITY}) */ public double getSupportUpperBound() { return Double.POSITIVE_INFINITY; } /** {@inheritDoc} */ public boolean isSupportLowerBoundInclusive() { return true; } /** {@inheritDoc} */ public boolean isSupportUpperBoundInclusive() { return false; } /** * {@inheritDoc} * * The support of this distribution is connected. * * @return {@code true} */ public boolean isSupportConnected() { return true; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy